
6

Science’s powers and limits

What are science’s powers and limits? That is, where is the boundary between
what science is and is not able to discover? The American Association for the
Advancement of Science has identified that issue as a critical component of
science literacy: “Being liberally educated requires an awareness not only of the
power of scientific knowledge but also of its limitations,” and learning science’s
limits “should be a goal in all science courses” (AAAS 1990:20–21). The National
Research Council concurs: “Students should develop an understanding of what
science is, what science is not, what science can and cannot do, and how science
contributes to culture” (NRC 1996:21).

People’s motivations for exploring the limits of science can easily be miscon-
strued, so they should be made clear from the outset. Unfortunately, for some
authors writing about science’s limits, the motivation has been to exaggerate
the limitations in order to cut science down, support antiscientific sentiments,
or make more room for philosophy or religion. For others, the motivation has
been to downplay science’s limitations in order to enthrone science as the one
and only source of real knowledge and truth. Neither of those excesses repre-
sents my intentions. I do not intend to fabricate specious problems to shrink
science’s domain, nor do I intend to ignore actual limitations to aggrandize sci-
ence’s claims. Rather, the motivation here is to characterize the actual boundary
between what science can do and cannot do. One of the principal determinants
of that boundary is the topic of this book, the scientific method.

Rather obvious limitations

Several limitations of science are rather obvious and hence are not controver-
sial. The most obvious limitation is that scientists will never observe, know,
and explain everything about even science’s own domain, the physical world.
The Heisenberg uncertainty principle, Gödel’s theorem, and chaos theory set
fundamental limits.
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The sciences and worldviews 97

Besides these fundamental limits, there are also practical and financial limits.
“Today, the costs of doing scientific work are met by public and corporate funds.
Often, major areas of scientific endeavor are determined by the mission-oriented
goals of government, industry, and the corporations that provide funds, which
differ from the goals of science” (AAAS 1990:21).

The most striking limitation of science, already discussed in Chapter 5, is
that science cannot prove its presuppositions. Nor can science appeal to philos-
ophy to do this job on its behalf. Rather, science’s presuppositions of a real and
comprehensible world – as well as philosophy’s presuppositions of the same –
are legitimated by an appeal to rudimentary common sense followed by philo-
sophical reflection.

However, the remainder of this chapter explores the powers and limits of sci-
ence that are not especially obvious. Science’s capacity to address big worldview
questions is important but controversial. And an integrally related matter is the
role of the humanities and the influence of individual experience on worldview
convictions. A neglected topic meriting attention is science’s power to enhance
personal character and experiences of life.

The sciences and worldviews

Can science reach farther than its ordinary investigations of galaxies, flowers,
bacteria, electrons, and such? Can science also tackle life’s big questions, such
as whether God exists and whether the universe is purposeful? This is the most
complex – and perhaps the most significant – aspect of the boundary between
science’s powers and limits.

Life’s grand questions could be termed religious or philosophical or world-
view questions. But a single principal term is convenient and the rather broad
term worldview is chosen here. A worldview sums up a person’s basic beliefs
about the world and life. The following account draws heavily from Gauch
(2009a, 2009b).

Whether worldview implications are part of science’s legitimate business is
controversial. Nevertheless, the mainstream view, as represented by the AAAS,
is that one of science’s important ambitions is contributing to a meaningful
worldview. “Science is one of the liberal arts” and “the ultimate goal of liberal
education” is the “lifelong quest for knowledge of self and nature,” including
the quest “to seek meaning in life” and to achieve a “unity of knowledge” (AAAS
1990:xi, 12, 21). AAAS position papers offer numerous, mostly helpful perspec-
tives on religion, God, the Bible, clergy, prayer, and miracles. The Dialogue on
Science, Ethics, and Religion (DoSER) program of the AAAS offers ongoing
events and publications.

The AAAS regards science’s influence on worldviews not only as a desir-
able quest but also a historical reality. “The knowledge it [science] generates
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98 Science’s powers and limits

sometimes forces us to change—even discard—beliefs we have long held about
ourselves and our significance in the grand scheme of things. The revolutions
that we associate with Newton, Darwin, and Lyell have had as much to do
with our sense of humanity as they do with our knowledge of the earth and its
inhabitants. . . . Becoming aware of the impact of scientific and technological
developments on human beliefs and feelings should be part of everyone’s sci-
ence education” (AAAS 1989:134). Likewise, “Scientific ideas not only influence
the nature of scientific research, but also influence—and are influenced by—the
wider world of ideas as well. For example, the scientific ideas of Copernicus,
Newton, and Darwin . . . both altered the direction of scientific inquiry and
influenced religious, philosophical, and social thought” (AAAS 1990:24).

But, unfortunately, on the specific worldview question of life’s purposes,
AAAS position papers are inconsistent. On the one hand, they say that science
does not answer the big question about purposes: “There are many matters
that cannot usefully be examined in a scientific way. There are, for instance,
beliefs that—by their very nature—cannot be proved or disproved (such as
the existence of supernatural powers and beings, or the true purposes of life)”
(AAAS 1989:26). On the other hand, it is most perplexing that another AAAS
position paper claims that science does answer this question: “There can be no
understanding of science without understanding change and the fact that we
live in a directional, though not teleological, universe” (AAAS 1990:xiii; also see
p. 24). Now “teleological” just means “purposeful,” so here the AAAS is boldly
declaring, without any argumentation or evidence, that we live in a purposeless
universe. Consequently, this is one of those rare instances in which AAAS
statements have not provided reliable guidance because they are contradictory.

Science’s powers and limits as regards ambitious worldview inquiries depend
not only on science’s method but also on social conventions that define sci-
ence’s boundaries and interests. A social convention prevalent in contemporary
science, methodological naturalism, limits science’s interests and explanations
to natural things and events, not supernatural entities such as God or angels.
Methodological naturalism has roots in antiquity with Thales (c. 624–546 bc)
and others. Subsequently, medieval scholars emphasized pushing their under-
standing of natural causes to its limits (Lindberg 2007:240–241; Ronald L.
Numbers, in Lindberg and Numbers 2003:265–285). But the name “method-
ological naturalism” is of recent origin, only three decades ago.

Methodological naturalism contrasts with metaphysical or ontological natu-
ralism that asserts natural entities exist but nothing is supernatural, as claimed
by atheists. Hence, methodological naturalism does not deny that the super-
natural exists but rather stipulates that it is outside science’s purview. Unfor-
tunately, methodological naturalism is sometimes confused with ontological
naturalism. To insist that science obeys methodological naturalism and that
science supports atheism is to get high marks for enthusiasm but low marks for
logic.
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The sciences and worldviews 99

Many worldview matters might seem to reside within science’s limits, rather
than its powers, given that methodological naturalism excludes the supernatu-
ral. Indeed, questions such as whether God exists and whether the universe is
purposeful, which inherently involve the supernatural, are precisely the kinds
of questions that are foremost in worldview inquiries.

However, to be realistic, contemporary science is replete with vigorous discus-
sions of worldview matters. For starters, consider the exceptional science books
that manage to become bestsellers. The great majority of them are extremely
popular precisely because they have tremendous worldview import, such as
Collins (2006) and Dawkins (2006). Less popular but more academic books
also concern science and worldviews, such as Ecklund (2010).

Furthermore, interest in science’s worldview import is a minor but consis-
tent element in mainstream science journals. For instance, religious experience
provides one of the standard arguments for theism, but in American Scientist,
psychologist Jesse Bering (2006) attempted to explain away belief in a deity or an
afterlife as a spurious evolutionary by-product of our useful abilities to reason
about the minds of others. Likewise, Michael Shermer, the editor of Skeptic, has
a monthly column in Scientific American with provocative items such as “God’s
number is up” (Shermer 2004). Also, survey results on the religious convictions
of scientists were published in Science (Easterbrook 1997), and significant com-
mentary on science and religion was provided in Nature (Turner 2010; Grayling
2011; Waldrop 2011). To gauge the extent of worldview interests in mainstream
science, an interesting little exercise is to visit the websites of journals such as
Nature and Science and search for “religion” to see how many thousands of hits
result.

Hence, contemporary scientific practice is far from a consistent and convinc-
ing implementation of methodological naturalism. Nor is the present scene
uncharacteristic, given the broad interests of natural philosophers (now known
as “scientists” since around 1850) in ancient, medieval, and modern times. Of
course, methodological naturalism is characteristic of routine scientific inves-
tigations, such as sequencing the genome of the virus that causes the common
cold, but that does not necessarily mean that it extends to every last scientific
interest or publication.

Whereas mainstream science can and does have some worldview import,
prominent variants of fringe science are problematic, particularly scientism
and skepticism. They are opposite errors. At the one extreme, scientism says
that only hard, no-nonsense science produces all of our dependable, solid truth.
At the opposite extreme, skepticism says that science produces no final, settled
truth.

Yet, curiously, these opposite errors support exactly the same verdict on any
worldview inquiry appealing to empirical and public evidence. On the one
hand, scientism automatically and breezily dismisses any worldview arguments
coming from philosophy, theology, or any other discipline in the humanities
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100 Science’s powers and limits

because such disciplines lack the validity and authority that science alone pos-
sesses. On the other hand, after skepticism has already judged all science to
be awash in uncertainty and tentativeness, ambitious worldview inquiries are
bound to receive this same verdict of impotence.

Returning to mainstream science, some scientists explore science’s worldview
import, other scientists exclude worldview issues in the name of methodological
naturalism, and still other scientists have no interests or opinions on such
matters whatsoever. This diversity of interests and temperaments hardly seems
surprising.

Empirical method in the humanities

This whole book is about scientific method, but this one section is about a
broader topic that may be termed empirical method, which subsumes scientific
method as a special case. Empirical method concerns what can be known by
means of empirical and public evidence, regardless of whether that evidence
comes from the sciences or the humanities. Any persons interested in pushing
empirical and public evidence to its limits must understand the structure and
workings of empirical method, not merely scientific method.

The humanities are academic disciplines that study the human condition.
They include the classics, languages, literature, history, law, philosophy, religion
or theology, and the visual and performing arts. The humanities use a great
variety of methods, including some use of empirical and public evidence.

The essence of scientific method is to appeal to empirical and public evidence
to gain knowledge of great theoretical and practical value about the physical
world. In greater detail than that single sentence can capture, this book’s account
of scientific method features the PEL model of full disclosure and the justifica-
tion of truth claims based on that model, as summarized in Figures 5.1 and 5.3 –
although this whole book is needed for a reasonably complete account of sci-
entific method. But, clearly, empirical and public evidence also has roles in the
humanities. Especially when empirical evidence is used in ambitious worldview
inquiries, as contrasted with routine scientific or technological investigations,
the combined perspectives of the sciences and the humanities yield the most
reliable and beneficial results.

This section’s extremely brief account of empirical method is relevant in this
book on scientific method for at least three reasons. First, understanding how
public evidence and standard reasoning support truth claims in multiple con-
texts across the sciences and the humanities gives students their best chance of
deeply understanding rationality within science itself. Comparing and contrast-
ing stimulates real comprehension. Second, the AAAS (1990) vision of science
as a liberal art calls for a humanities-rich understanding of science, which is
promoted greatly by grasping the empirical method that spans the sciences
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Empirical method in the humanities 101

and the humanities. Third, the scientism that is decisively renounced by main-
stream science, but still finds frequent expression especially at the popular level,
is best discredited by conscious awareness of projects in the humanities that
also appeal to empirical evidence.

All of the disciplines in the humanities contribute to a meaningful worldview.
But among these many academic disciplines, natural theology is a prominent
example of using empirical method to address worldview questions by means
of public evidence.

The article on natural theology by MacDonald (1998) in the Routledge Ency-
clopedia of Philosophy characterizes this discipline. “Natural theology aims at
establishing truths or acquiring knowledge about God (or divine matters gen-
erally) using only our natural cognitive resources.” He further explained that
“The phrase ‘our natural cognitive resources’ identifies both the methods and
data for natural theology: it relies on standard techniques of reasoning and
facts or truths in principle available to all human beings just in virtue of their
possessing reason and sense perception.” Natural theology considers arguments
both for and against theism, with proponents of diverse perspectives sharing a
common impartial methodology.

The implicit contrast is with revealed theology, which instead relies on a
revelation or scripture taken as authoritative or inspired within a given faith
community. However, a scripture may have some contents and aspects that
are verifiable independently with public evidence, so the relationship between
natural and revealed theology is one of partial overlap.

Natural theology may be completely unknown to many students and profes-
sionals in the sciences. But this unfamiliarity does not negate the existence of
this vigorous academic discipline, nor negate natural theology’s character as a
discipline that relies on empirical and public evidence. Two resources on natural
theology may be mentioned for those who are interested. The Blackwell Com-
panion to Natural Theology provides a recent and scholarly overview of natural
theology (Craig and Moreland 2009). Its chapters review the ontological, cos-
mological, and moral arguments and the arguments from evil, consciousness,
reason, religious experience, and miracles. The ongoing Gifford lectures on
natural theology – endowed by Lord Gifford more than a century ago in Scot-
land’s four ancient universities – are frequently published in readily available
books.

Gifford lectures by eminent scientists, theologians, philosophers, and other
scholars engage an astonishing and intriguing diversity of arguments and evi-
dence. These renowned lectures on natural theology have included scientists
Simon Conway Morris, Richard Dawkins, Freeman Dyson, Sir John Eccles, Sir
Arthur Eddington, Werner Heisenberg, Michael Polanyi, Martin Rees, and Carl
Sagan; theologians Karl Barth, Rudolf Bultmann, Stanley Hauerwas, Jurgen
Moltmann, Reinhold Niebuhr, Albert Schweitzer, and Paul Tillich; scientist-
theologians Ian Barbour, Stanley Jaki, and Sir John Polkinghorne; philosophers
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102 Science’s powers and limits

Marilyn Adams, Sir Alfred Ayer, John Dewey, Antony Flew, Étienne Gilson,
Alasdair MacIntyre, Mary Midgley, Alvin Plantinga, Paul Ricoeur, Eleonore
Stump, Richard Swinburne, and Alfred Whitehead; and scholars Noam Chom-
sky, Frederick Copleston, Jaroslav Pelikan, and Arnold Toynbee.

The literature on natural theology – both historical and contemporary –
is largely from prestigious academic publishers, and it is simply enormous.
Evaluation of natural theology’s empirical evidence is outside the scope of this
book and it requires considerable effort. By stark contrast, evaluation of natural
theology’s empirical method is within the scope of this book on scientific
method for the three reasons indicated near the beginning of this section,
and this evaluation is easy work. It requires merely one longish paragraph, as
follows.

The PEL model, which applies to all disciplines and inquiries using empiri-
cal and public evidence to support truth claims, specifies three requirements.
(1) Appropriate Presuppositions. MacDonald’s definition of natural theology
does not mention presuppositions explicitly, but the context makes two things
abundantly clear. On the one hand, natural theology’s arguments support con-
clusions either for or against theistic beliefs, so avoidance of circular reasoning
necessarily prohibits natural theology’s presuppositions from containing any
worldview distinctives. On the other hand, “facts or truths in principle available
to all human beings just in virtue of their possessing reason and sense percep-
tion” just is public and empirical evidence. Accordingly, like natural science,
natural theology must also presuppose the existence and comprehensibility of
the physical world. Hence, natural science and natural theology have identi-
cal presuppositions. (2) Admissible and Relevant Evidence. The admissibility of
empirical evidence depends on a methodological consideration, namely, appro-
priate presuppositions, as already mentioned. And the relevance of empirical
evidence depends on whether a given item or collection of admissible evidence
bears differentially on the credibilities of the competing hypotheses. To count
as relevant evidence in public discourse, the evidence must constitute facts
established to everyone’s satisfaction, and the interpretation of the evidence
must also be settled, which involves agreement over how likely (at least approx-
imately) the observed facts would be were each of the hypotheses true. That
is, disputes concern which worldview hypothesis is true or likely, but not the
facts, and not the interpretations of the facts. Relevance must be judged on a
case-by-case basis and hence is a matter for detailed empirical investigation,
rather than a methodological consideration to be resolved by a single deci-
sion yielding a comprehensive verdict. (3) Standard and Impartial Logic. The
logic that natural theology uses “relies on standard techniques of reasoning.”
The implicit contrast is with special pleading that biases an argument toward
the favored conclusion. Natural theology uses the same sorts of deductive and
inductive logic as natural science. Logic is explored in the following three chap-
ters, including Bayesian inference that is used extensively in natural theology.
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Empirical method in the humanities 103

Hypothesis tests using Bayesian methods treat all hypotheses symmetrically and
impartially. As will be explained in following chapters, an exceedingly strong
conclusion can emerge when the weight of the evidence grows exponentially
with its amount. Some arguments in natural theology exemplify this particu-
larly favorable situation. In review, reasons that count across worldviews satisfy
three necessary and sufficient conditions: appropriate presuppositions, admis-
sible and relevant evidence, and standard and impartial logic. Natural theology’s
methodology assures, once and for all, that natural theology has appropriate
presuppositions, admissible evidence, and standard and impartial logic. That
leaves only the relevance of the evidence for testing specified hypotheses to be
judged on a case-by-case basis by means of careful empirical investigation.

Avoidance of circular reasoning is crucial for applications of empirical
method in worldview inquiries. Unfortunately, circular reasoning can take much
more subtle forms than its obvious archetype, “X; therefore X.” For a first exam-
ple of subtle circular reasoning, consider the question: Does evolution show that
life emerged from random mutations and processes within a purposeless uni-
verse? Atheists or agnostics such as Richard Dawkins (1996, 2006) typically
presume that random processes like gene mutations must be purposeless. But
theist Francis Collins (2006:205, also see 80–82) believes in a sovereign God
who inhabits eternity, so “God could be completely and intimately involved
in the creation of all species, while from our perspective, limited as it is by
the tyranny of time, this would appear a random and undirected process.”
Hence, there can be agreement about the facts of random mutations and yet
disagreement about the interpretation of those facts as regards purposelessness.
Until the interpretation of these facts has been settled in a manner that counts
across worldviews, any assertion that randomness implies purposelessness con-
stitutes subtle circular reasoning. Why? That implication of purposelessness
depends crucially on a particular and supportive worldview, atheism, that is
only one of the worldviews included in a conversation taking place in natural
theology.

For a second and final example of subtle circular reasoning, consider the
question: Can science explain everything? The claim that everything has a
scientific, natural explanation has been a popular argument for atheism at least
since medieval times. Thomas Aquinas (c. 1225–1274) expressed this objection
to theism quite concisely: “it seems that we can fully account for everything we
observe in the world while assuming that God does not exist” (Davies and Leftow
2006:24). But exactly what is this “everything” that science explains? Scientists
in particular and people in general disagree about this “everything” that has
happened in our world, largely because of worldview differences. For instance,
an interesting exchange between Richard Dawkins, identified as a biologist
and “an agnostic leaning toward atheism,” and Simon Conway Morris, an
evolutionary paleontologist and a Christian, was reported in Scientific American
(Horgan 2005). Dawkins thought that neither the fine-tuning of the universe
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104 Science’s powers and limits

nor the origin of life requires an explanation involving God, whereas many
theists judge otherwise. But Conway Morris “asserted that the resurrection and
other miracles attributed to Christ were ‘historically verifiable’,” whereas atheists
typically deny that such miracles really happened. Consequently, if an argument
for either theism or atheism presupposes a particular and controversial account
of this “everything” that has happened in our world and then claims that
success in explaining “everything” supports this same worldview, then such an
argument is merely a subtle instance of the argument form, “X; therefore X.”

These two examples might prompt a suspicion that all arguments in natu-
ral theology, if inspected carefully enough, would reduce to circular reasoning.
However, an inference from merely two examples, intentionally selected to illus-
trate potential problems, to a universal verdict on natural theology constitutes
singularly bad inductive logic. The intent here is to stimulate careful assessment,
not to justify breezy dismissal.

Historically, the weaker of science or theology often sought support from the
stronger: “With the benefit of hindsight we can now see that over the course
of the past 150 years a remarkable reversal has taken place. Whereas once the
investigation of nature had derived status from its intimate connections with
the more elevated disciplines of ethics and theology, increasingly during the
twentieth century these latter disciplines have humbly sought associations with
science in order to bask in its reflected glory” (Peter Harrison, in Dixon, Cantor,
and Pumfrey 2010:28). Nevertheless, whatever legitimacy and success natural
theology may have is not derived from its similarities with natural science,
nor the reverse. “Reason interpreting experience uses many different methods,
depending on the subject-matter and the point of view, but they all throw
light on one another. Science, then, is not to be confused with other modes of
thought, but neither is it to be entirely divorced from them” (Caldin 1949:135).
Indeed, it is by understanding rational procedure in multiple instances, with
each legitimated on its own merits, that one can best understand rationality
within any of its applications.

Besides natural theology, other humanities also apply public and empiri-
cal evidence to worldview inquiries, including some arguments in philosophy.
And because some religions or worldviews are based substantially on histori-
cal events, historical and archaeological evidence can have worldview import.
On the other hand, literature, music, and art contribute greatly to cultures
and worldviews, but not particularly by way of empirical evidence bearing on
worldview hypotheses. In the special case of a scientific or historical inquiry
that is especially rich in worldview import, at least as some scholars see it,
philosophical and statistical analysis is often essential for a proper assessment
of the bearing of the evidence on competing worldview hypotheses, includ-
ing avoidance of subtle circular reasoning. The principal requirement for any
worldview inquiry appealing to public and empirical evidence, whether it be
pursued in natural theology or science or history, is that the action be in public
evidence, not controversial presuppositions or biased logic. The very fact that
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Individual experience and worldviews 105

ordinarily worldviews are highly comprehensive tends to implicate multiple
possibilities for relevant evidence, so cumulative cases with multiple arguments
are common. The inherent strength of a cumulative case, however, comes at the
risk of diffuse and rambling argumentation with little action in any one spot.
Consequently, a cumulative case is more engaging if at least one of its lines of
argumentation is strong, even when considered singly.

In conclusion, mainstream science favors, and historical review exemplifies,
science’s contribution to a meaningful worldview. But empirical and public
evidence from the humanities and sciences together is far more informative than
from the sciences alone. The reward for the scientist who perceives scientific
method to be an instance of empirical method more generally is the liberty to
put empirical evidence to greater use.

Individual experience and worldviews

The preceding two sections concerned empirical and public evidence from
the sciences and the humanities. But public evidence is not the sum total
of influences on worldview convictions. People are also influenced by their
individual experience, including experience that would not ordinarily count as
empirical and public evidence.

For example, consider personal beliefs about whether miracles occur, which
can influence worldview convictions substantially. To be clear, what is meant
by miracles here is real, decidedly supernatural miracles – not the “miracle” of
seeing one’s own child born or the “miracle” of getting that dream job. Many
persons believe in miracles, either from direct observation or from dependable
reports from trusted family and friends, as well as from historical miracle
reports in a scripture that is trusted and authoritative within a given religious
tradition. And many other persons have encountered nothing whatsoever that
seems beyond the ordinary workings of the physical world.

Because worldview convictions are so controversial within the scientific com-
munity (Easterbrook 1997; Larson and Witham 1999; Ecklund 2010), it is
inappropriate for scientific organizations to take positions on which world-
view is true. Furthermore, only scientific evidence is within the provenance
and competence of scientific organizations, and yet many scholars, including
many scientists, believe for good reasons that a wider survey than science alone
can offer is required to reach the most reliable and robust conclusions about
worldviews.

On the other hand, because mainstream science asserts that science con-
tributes to a meaningful worldview, it is appropriate for individual scientists to
argue that scientific evidence supports a particular worldview. When the world-
view convictions of such scientists have also been influenced by the humanities,
individual experience, or other significant factors, readers of their arguments
will benefit from getting the whole story.
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106 Science’s powers and limits

Increasingly Challenging Questions 

Worldview 

Are the universe and life
   purposeful?

Does God exist?   

Science 

Is water composed of
   hydrogen and oxygen?

Is the universe about 13.7
   billion years old?   

Common Sense  

Are moving cars hazardous
   to pedestrians?

Are there elephants in
   Africa?     

→→→→→→→→→→→→→→→→    →   →   →   →
 The reach of empirical and public evidence from the sciences and the humanities 

Figure 6.1 Increasingly challenging questions in the realms of common sense, science,

and worldviews. Mainstream science presumes the competence of common sense to

answer rudimentary questions, such as those listed in this figure, and affirms the

competence of science to answer more difficult questions. But the scientific community

lacks consensus on whether empirical and public evidence from the sciences and the

humanities can answer challenging worldview questions. Hence, the reach of such

evidence is depicted by continuous arrows extending through common sense and science,

but by dashed arrows thereafter. All scientists follow along the continuous arrows,

whereas only some scientists continue along the dashed arrows.

To understand the worldview diversity among individuals within the scien-
tific community, a simple but helpful insight is that increasingly challenging
questions arise as one progresses from common sense to science to worldview
questions, as depicted in Figure 6.1. The underlying issue is the reach of empir-
ical and public evidence from the sciences and the humanities. Such evidence
could be of interest for various reasons. Some persons, whether a scientist or
not, may think that empirical evidence is the only sort of evidence that really
counts. Other persons, especially those with interests in the humanities, may
have a broader conception of the sources of knowledge. In either case, a per-
son may want to push empirical and public evidence to its limits, addressing
questions as challenging as possible.

Progressing from left to right in this figure, the most rudimentary questions
are in the realm of common sense at the left. One who gets that far with
empirical and public evidence, having rejected radical skepticism, might well
feel encouraged to take the next step: attempting more difficult questions in the
realm of science. If that attempt fails, trying even more challenging worldview
questions is bound to be futile. But if that attempt succeeds, one might well want
to take the next step: attempting yet harder worldview questions, especially by
engaging evidence from both the sciences and the humanities.

Co
py
ri
gh
t 
@ 
20
12
. 
Ca
mb
ri
dg
e 
Un
iv
er
si
ty
 P
re
ss
.

Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e 
co
py
ri
gh
t 
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 9/27/2019 11:29 AM via JAMES MADISON UNIVERSITY
AN: 527886 ; Gauch, Hugh G..; Scientific Method in Brief
Account: s8863137.main.eds



Logical roles and diagnoses 107

At its best, the conversation among individual scientists having diverse per-
spectives on the limits of empirical knowledge is significant, erudite, respectful,
and fruitful. What an understanding of scientific method can contribute to that
conversation, by drawing on the PEL model, is complete clarity that whatever
support science may give to a specific worldview originates from admissible and
relevant evidence, rather than from science’s worldview-independent presup-
positions and impartial logic. What an understanding of science’s powers and
limits can contribute is a perspective on the liberal art of science that appreci-
ates the combined strength of the sciences and the humanities when tackling
ambitious worldview questions, especially questions that methodological nat-
uralism puts outside science’s purview. And what a proper understanding of
methodological naturalism can contribute is a stipulatory prohibition against
invoking supernatural entities within natural science that (1) is not confused
with asserting ontological naturalism, and (2) is not extended thoughtlessly to
other disciplines outside natural science, such as natural theology, that have
their own questions, evidence, and rules.

Logical roles and diagnoses

The basic components of scientific reasoning – identified by the PEL model
as presuppositions, evidence, logic, and conclusions – represent four different
logical roles. Different logical roles interact with worldviews in different ways.
A statement’s logical role is as important as its content.

The difference between “The universe is purposeless” and “The universe is
purposeful” is obvious, marking out a vigorous debate. But equally different
are “The universe is purposeless” in the logical role of a presupposition and this
same “The universe is purposeless” in the role of a conclusion. As a worldview
presupposition going beyond science’s legitimate presuppositions, its function
would be limited to self-congratulatory discourse among kindred spirits. But as
a worldview conclusion from a sound argument with worldview-independent
presuppositions and impressive evidence, its audience would be the larger world.
Recognizing the importance of a statement’s logical role, as well as its content,
leads to the following several diagnoses.

If a worldview belief has logical roles as both a presupposition and a con-
clusion within a given discourse, then the diagnosis is circular reasoning in the
service of empty dogmatism.

If an argument is unclear regarding whether its worldview belief has the
logical role of a presupposition or a conclusion, then the diagnosis is amateurish
discourse.

If an argument for a given worldview belief presumes or asserts that science
exclusively is the only source of public and empirical evidence, then the diag-
nosis is the unmitigated scientism that is roundly repudiated as being outside
mainstream science (AAAS 1989:26, 30, 133–135, 1990:24–25).
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108 Science’s powers and limits

Finally, if a worldview belief emerges in the logical role of a conclusion from
an argument also having appropriate presuppositions, admissible and relevant
evidence that is public and empirical, and impartial logic, then the diagnosis is
a legitimate argument meriting consideration.

Review of boundaries

Much could be said about the boundaries between science’s powers and limits.
The following five concise statements express the essence of these boundaries.
(1) The scientific community can build upon and move beyond common sense

in providing much reliable and even certain knowledge about the physical
world.

(2) Science cannot explain everything about the physical world because of
fundamental and practical limits. Also, it cannot prove its own needed
presuppositions.

(3) Science is worldview independent as regards its presuppositions and meth-
ods, but scientific evidence, or empirical and public evidence more gener-
ally, can have worldview import. Methodological considerations reveal this
possibility and historical review demonstrates its actuality.

(4) It is appropriate for individual scientists to argue that scientific evidence
supports a particular worldview, or else to claim that such arguments
are illegitimate. But it is not appropriate for scientific organizations to
advocate particular positions because worldview commitments are highly
controversial within the scientific community and because the humanities
also offer relevant evidence and arguments outside the competence of
scientific organizations.

(5) Considerations that inform worldview choice include (1) empirical and
public evidence from the sciences; (2) empirical and public evidence from
the humanities, especially natural theology; and (3) the individual expe-
rience of a given person that is meaningful for that person, although it
may not qualify as empirical and public evidence for the wider world.
Accordingly, science has significant but limited competence for address-
ing worldview questions, including whether God exists and whether the
universe is purposeful. The sciences without the humanities are lame, and
public evidence without individual experience is dehumanizing.

Personal rewards from science

The intellectual, technological, and economic benefits from science are widely
acknowledged by society. Likewise, the importance of science education for
good citizenship in a scientific and technological age is widely appreciated. But
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Personal rewards from science 109

another important value of science receives far too little attention: the personal
rewards of science, that is, the beneficial effects of science on scientists’ personal
character and experiences of life.

As this chapter on science’s powers and limits draws toward a close, these
powers merit attention. Caldin (1949) explored this topic with rare wisdom
and charm, so the following remarks draw much from him. Unfortunately,
“the place of science in society is too often considered in the narrow setting
of economic welfare alone, so that the potential contribution of science to the
growth of the mind and will is under-estimated” (Caldin 1949:155). One reward
from science is stimulation of rationality and wisdom:

Now a knowledge of nature is part of wisdom, and we need it to live properly. . . . Science
is, therefore, good “in itself,” if by that we mean that it can contribute directly to personal
virtue and wisdom; it is not just a means to welfare, but part of welfare itself. . . . Scientific
life is a version of life lived according to right reason. . . . Consequently, the practice of
science requires both personal integrity and respect for one’s colleagues; tolerance for
others’ opinions and determination to improve one’s own; and care not to overstate
one’s case nor to underrate that of others. . . . By studying science and becoming familiar
with that form of rational activity, one is helped to understand rational procedure in
general; it becomes easier to grasp the principles of all rational life through practice of
one form of it, and so to adapt those principles to other studies and to life in general.
Scientific work, in short, should be a school of rational life. (Caldin 1949:133–135)

Still another personal reward from science is cultivation of discipline, char-
acter, realism, and humility:

It is not only the intellect that can be developed by scientific life, but the will as well.
Science imposes a discipline that can leave a strong mark on the character as can its
stimulation of the intellect. All who have been engaged in scientific research know the
need for patience and buoyancy and good humour; science, like all intellectual work,
demands (to quote von Hügel) “courage, patience, perseverance, candour, simplicity,
self-oblivion, continuous generosity towards others, willing correction of even one’s
most cherished views.” Again, like all learning, science demands a twofold attention, to
hard facts and to the synthetic interpretation of them; and so it forbids a man to sink
into himself and his selfish claims, and shifts the centre of interest from within himself to
outside. But for scientists there is a special and peculiar discipline. Matter is perverse and
it is difficult to make it behave as one wants; the technique of experimental investigation
is a hard and chastening battle. Experimental findings, too, are often unexpected and
compel radical revision of theories hitherto respectable. It is in this contact with “brute
fact and iron law” that von Hügel found the basis of a modern and scientific asceticism,
and in submission to this discipline that he found the detaching, de-subjectifying force
that he believed so necessary to the good life. The constant friction and effort, the
submission to the brute facts and iron laws of nature, can give rise to that humility and
selflessness and detachment which ought to mark out the scientist. (Caldin 1949:135–
136)
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110 Science’s powers and limits

Summary

Understanding the boundary between science’s powers and limits is a core
component of scientific literacy. Some limitations are rather obvious, such as
that science cannot explain everything about the world and that it cannot prove
its own needed presuppositions.

Many scientists, philosophers, and other scholars have debated whether help-
ing to inform large worldview issues, such as the purpose of life, is among
science’s powers or beyond its limits. However, the mainstream position rep-
resented by the AAAS is that contributing to a meaningful worldview is both
a proper ambition of science and a historical reality of science. But the sci-
ences are not alone in this endeavor. Many disciplines in the humanities also
contribute to a meaningful worldview, including philosophy, theology, history,
literature, and the visual and performing arts. In addition to public evidence
from the sciences and the humanities, individual experience can also inform
a person’s worldview convictions, even though personal experience may not
count as public evidence.

Empirical method uses empirical and public evidence from the sciences and
the humanities to reach conclusions that can bear on worldviews. In assessing
arguments for or against a given worldview, not only the content but also the log-
ical role of statements matters. An argument merits consideration that presents
its worldview in the logical role of a conclusion, emerging from appropriate
presuppositions, empirical evidence, and impartial logic.

Among science’s powers is a considerable ability to be of benefit to scientists’
personal character and experiences of life. The essence of this benefit is the
selflessness, detachment, and humility that result from deliberate and outward-
looking attention given to the physical world.

Study questions

(1) The AAAS insists that understanding the boundary between science’s pow-
ers and limits is a core requirement of scientific literacy. Have you received
any instruction on these matters? If so, what was the message, did it make
sense, and did it align with position papers on science from the AAAS and
NRC? If not, what explanations might you suggest for its absence in your
curriculum?

(2) Which components of science – presuppositions or logic or evidence –
could potentially have worldview import? Explain all three of your verdicts.
What diagnosis results if a worldview belief has logical roles of both a
presupposition and a conclusion?

(3) The text argues that worldview convictions can be informed by three
sources: the sciences, the humanities, and personal experiences. What is
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Study questions 111

a significant example of each? What does having three potential resources
imply for science’s role in forming worldview convictions?

(4) What is the distinction between scientific method and empirical method?
How do they differ in their powers and limits, particularly in the range of
hypotheses and evidence under consideration?

(5) Regardless of whether you are a student or a professional in the sciences or
the humanities, what personal rewards by way of wisdom, discipline, and
character have you gained from your experiences with science?
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7

Deductive logic

The preceding five chapters are directed mainly at this book’s purpose of culti-
vating a humanities-rich perspective on science. This is the first of five chapters
directed mainly at this book’s other purpose of increasing scientific productivity.

Logic is the science of correct reasoning and proof, distinguishing good
reasoning from bad. Logic addresses the relationship between premises and
conclusions, including the bearing of evidence on hypotheses.

In the context of logic, an “argument” is not a dispute but rather is a structured
set of statements in which some statements, the premises, are offered to support
or prove others, the conclusions. Many deductive systems, including arithmetic
and geometry, are developed on a foundation of logic in the modern and unified
vision of mathematics.

Of course, given the simple premises that “All men are mortal” and “Socrates
is a man,” one trusts scientists to reach the valid conclusion that “Socrates
is mortal,” even without formal study of logic. But given the more difficult
problems that continually arise in science, the rate of logical blunders can
increase substantially in the absence of elementary training in logic. Fortunately,
most blunders involve a small number of common logical fallacies, so even a
little training in logic can produce a remarkable improvement in reasoning
skills.

The aim of this chapter differs from that of an ordinary text or course
on logic. One short chapter cannot teach logic comprehensively. What it can
do, however, is convey an insightful general impression of the nature and
structure of deductive logic. Recall that the PEL model introduced in Chapter 5
identifies logic as one of the three essential inputs (along with presuppositions
and evidence) required to support scientific conclusions. Consequently, the
credibility of science depends on having a logic that is coherent and suitable for
investigating the physical world.

This chapter distinguishes the two basic kinds of logic: deductive logic,
explained in this chapter, and inductive logic, explored in Chapter 9. One
branch of deduction, probability theory, is deferred to the next chapter. The
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Deduction and induction 113

history of logic is reviewed briefly, followed by basic accounts of propositional
logic, predicate logic, and arithmetic. Common logical fallacies are analyzed to
refine reasoning skills.

Deduction and induction

The distinction between deduction and induction can be explained in terms
of three interrelated differences. Of these three differences, the one listed
first is the fundamental difference, with the others being consequences or
elaborations. Custom dictates distinct appellative terms for good deductive
and inductive arguments. A deductive argument is valid if the truth of its
premises guarantees the truth of its conclusions and is invalid otherwise. An
inductive argument is strong if its premises support the truth of its conclu-
sions to a considerable degree and is weak otherwise. The following deduc-
tive and inductive arguments, based on Salmon (1984:14), illustrate the three
differences.

Valid Deductive Argument
Premise 1. Every mammal has a heart.
Premise 2. Every horse is a mammal.
Conclusion. Every horse has a heart.

Strong Inductive Argument
Premise 1. Every horse that has been observed has had a heart.
Conclusion. Every horse has a heart.

First, the conclusion of a deductive argument is already contained, usually
implicitly, in its premises, whereas the conclusion of an inductive argument goes
beyond the information present, even implicitly, in its premises. The technical
terms for this difference are that deduction is nonampliative but induction is
ampliative. For example, the conclusion of the foregoing deductive argument
simply states explicitly, or reformulates, the information already given in its
premises. All mammals have hearts according to the first premise, and that
includes all horses according to the second premise, so the conclusion follows
that every horse has a heart. On the other hand, the conclusion of the foregoing
inductive argument contains more information than its premise. The premise
refers to some group of horses that have been observed up to the present,
whereas the conclusion refers to all horses, observed or not, and past or present
or future.

Note that this difference, between ampliative and nonampliative arguments,
concerns the relationship between an argument’s premises and conclusions,
specifically whether or not the conclusions contain more information than the
premises. This difference does not pertain to the conclusions as such, considered
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114 Deductive logic

in isolation from the premises – indeed, the foregoing two arguments have
exactly the same conclusion.

Second, given the truth of all of its premises, the conclusion of a valid
deductive argument is true with certainty, whereas even given the truth of all of
its premises, the conclusion of an inductive argument is true with at most high
probability. This greater certainty of deduction is a direct consequence of its
being nonampliative: “The [deductive] conclusion must be true if the premises
are true, because the conclusion says nothing that was not already stated by
the premises” (Salmon 1984:15). The only way that the conclusion of a valid
deductive argument can be false is for at least one of its premises to be false.
On the other hand, the uncertainty of induction is a consequence of its being
ampliative: “It is because the [inductive] conclusion says something not given
in the premise that the conclusion might be false even though the premise is
true. The additional content of the conclusion might be false, rendering the
conclusion as a whole false” (Salmon 1984:15). For example, the foregoing
inductive conclusion could be false if some other horse, not among those
already observed and mentioned in this argument’s premise, were being used
for veterinary research and had a mechanical pump rather than a horse heart.

Deductive arguments are either valid or invalid on an all-or-nothing basis
because validity does not admit of degrees. But inductive arguments admit of
degrees of strength. One inductive argument might support its conclusion with
a very high probability, whereas another might be rather weak.

The contrast between deduction’s certainties and induction’s probabilities
can easily be overdrawn, however, as if to imply that induction is second-rate
logic compared with deduction. Representing certain truth by a probability of
1 and certain falsehood by 0, an inductive conclusion can have any probability
from 0 to 1, including values arbitrarily close to 1 representing certainty of truth
(or 0 representing certainty of falsehood). Given abundant evidence, induction
can deliver practical certainties, although it cannot deliver absolute certainties.

Third and finally, deduction typically reasons from the general to the spe-
cific, whereas induction reasons in the opposite direction, from specific cases to
general conclusions. That distinction was prominent in Aristotle’s view of sci-
entific method (Losee 2001:5–8) and remains prominent in today’s dictionary
definitions. For instance, the Oxford English Dictionary defines “deduction” as
“inference by reasoning from generals to particulars,” and it defines “induction”
as “The process of inferring a general law or principle from the observation of
particular instances.” Deduction reasons from a given model to expected data,
whereas induction reasons from actual data to an inferred model, as depicted
in Figure 7.1.

As encountered in typical scientific reasoning, the “generals” and “partic-
ulars” of deduction and induction have different natures and locations. The
general models or theories exist in a scientist’s mind, whereas the particular
instances pertain to physical objects or events that have been observed. Often,
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Historical perspective on deduction 115

Deduction and Induction

Given Model

Inferred Model

Expected Data
Deduction

Induction
Actual Data

Figure 7.1 The opposite reasoning directions of deduction and induction. Deduction

reasons from the mind to the world, whereas induction reasons from the world to the

mind.

the observations or data comprise a limited sample, but the researchers are
interested in the larger population from which the sample was drawn. For
instance, a clinical trial may examine a representative sample of persons to
reach conclusions pertaining to the whole population of persons suffering from
a given disease.

Deduction is neither better than induction nor worse. Rather, they pursue
answers to different kinds of questions, with deduction reasoning from a mental
model to expected data, and induction reasoning from actual data to a mental
model. Both are indispensable for science.

Historical perspective on deduction

Aristotle (384–322 bc) wrote extensively on logic. Although his works on some
topics, including natural science, suffered much neglect until the early 1200s,
his corpus on logic, the Organon or tool (of reasoning), fared better. Aristotle’s
logic built on ideas from Socrates and Plato. Epicurean, Stoic, and Pythagorean
philosophers also developed logic and mathematics. Besides Greece, there were
impressive ancient traditions in logic in Babylon, Egypt, India, and China.
Largely because of Augustine’s early influence, the Aristotelian tradition came
to dominate logic in the West, so that tradition is emphasized here.

In his Prior Analytics, Aristotle taught that every belief comes through either
deduction or induction. His syllogistic logic is the first deductive system, pre-
dating Euclid’s geometry. Aristotle proposed an inductive–deductive model of
scientific method that features alternation of deductive and inductive steps.
This alternation, moving from mental model to physical world and back again,
leads scientists to a mind–world correspondence – to truth. In this process, any
discrepancy between model and world is to be resolved by adjusting the model
to the world because the actual data in the inductive step have priority over
the expected data in the deductive step. Assuming that the data are not faulty
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116 Deductive logic

or excessively inaccurate, actual data contrary to a model’s expectations imply
that something is wrong with the model. Adjusting one’s model to the world is
the basis of scientific realism.

Euclid (fl. c. 300 bc) was the great master of geometry. Many truths of
geometry were known before Euclid. For example, earlier Babylonians and
Egyptians knew that the sum of the interior angles of a triangle equals 180
degrees. But that was known by empirical observation of numerous triangles,
followed by inductive generalization. Their version of geometry was a practical
art related to surveying, in line with the name “geometry,” literally meaning
“earth measure.”

Euclid’s Elements of Geometry, in one of the greatest paradigm shifts ever,
instead demonstrated those geometrical truths by deduction from several
axioms and rules. Euclid’s geometry had five postulates concerning geome-
try, such as that a straight line can be extended in either direction, plus five
axioms or “common notions” concerning correct thinking and mathematics in
general, such as that the whole is greater than its parts. Euclid’s combination
of geometrical postulates and logical axioms represented a nascent recognition
that logic underlies geometry. Countless theorems can be deduced from Euclid’s
postulates and axioms, including that the sum of the interior angles of a triangle
equals 180 degrees.

Subsequently, non-Euclidean geometries were discovered by Thomas Reid
(1710–1796), Nikolai Lobachevsky (1792–1856), János Bolyai (1802–1860),
Bernhard Riemann (1826–1866), and others. This rendered Euclid’s work a
geometry rather than the geometry. In Reid’s alternative geometry, the sum of
the interior angles of a triangle equals more than 180 degrees.

Anicius Manlius Severinus Boethius (ad 480–524) translated, from Greek
into Latin, many parts of Aristotle’s logical works, Porphyry’s Introduction to
Aristotle’s Logic, and parts of Euclid’s Elements. His On Arithmetic, based on
earlier work by Nicomachus of Gerasa, became the standard text on arithmetic
for almost a millennium.

Peter Abelard (c. 1079–1142) wrote four books on logic. He and his stu-
dents, John of Salisbury and Peter Lombard, greatly influenced medieval logic.
The use of Arabic numerals was spread into Europe by Alexandre de Villedieu
(fl. c. 1225), a French Franciscan, John of Halifax (or Sacrobosco, c. 1200–
1256), an English schoolman, and Leonardo of Pisa (or Fibonacci, c. 1180–
1250), an Italian mathematician. The modern mind can hardly imagine the
tedium of multiplication or division using Roman numerals, or how few per-
sons in medieval Europe could perform what we now regard as elementary
calculations.

Albertus Magnus (c. 1200–1280) wrote 8,000 pages of commentary on Aris-
totle, including much logic. He also wrote a commentary on Euclid’s Elements.

Robert Grosseteste (c. 1168–1253) founded the mathematical-scientific tra-
dition at Oxford. He affirmed and refined Aristotle’s inductive–deductive
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Historical perspective on deduction 117

scientific method, which he termed the “Method of Resolution and Composi-
tion” for its inductive and deductive components, respectively. Also, his Method
of Verification involved deriving the deductive consequences of a theory beyond
the original facts on which the theory was based and then observing the actual
outcome in a controlled experiment to check the theory’s predictions. That
method recognized the priority of data over theories, in accord with Aristotle.
Grosseteste’s Method of Falsification eliminated bad theories or explanations
by showing that they imply things known to be false. To increase the chances
of eliminating false theories, he recommended that conclusions reached by
induction be submitted to the test of further observation or experimentation.

Putting all those methods together, the objective of Grosseteste’s new science
was to make theory bear on the world and the world bear on theory, thereby
bringing theory into correspondence with the world. Grosseteste’s scientific
method sought to falsify and reject false theories, to confirm and accept true
theories, and to discern which kinds of observational or experimental data
would help the most in theory evaluation.

There is substantial similarity between Grosseteste’s medieval science and
modern science. “Modern science owes most of its success to the use of these
inductive and experimental procedures, constituting what is often called ‘the
experimental method’. The . . . modern, systematic understanding of at least the
qualitative aspects of this method was created by the philosophers of the West
in the thirteenth century. It was they who transformed the Greek geometrical
method into the experimental science of the modern world” (Crombie 1962:1).
I concur with this assessment that a basically correct and complete scientific
method emerged in the thirteenth century.

William of Ockham (c. 1285–1347) wrote a substantial logic text, the Summa
logicae. The principle of parsimony is often called Ockham’s razor because of
his influential emphasis on this principle. Jean Buridan (c. 1295–1358) wrote
the Summulae de dialectica, a then-modern revision and amplification of the
earlier logic text by Peter of Spain (fl. first half of the thirteenth century), and
two advanced texts, the Consequentiae and Sophismata.

René Descartes (1596–1650) was the founder of analytic geometry. Blaise Pas-
cal (1623–1662) contributed to projective geometry, arithmetic, combinatorial
analysis, probability, and the theory of indivisibles (a forerunner of integral cal-
culus). He developed the first commercial calculating machine. Isaac Newton
(1642–1727) and Gottfried Leibniz (1646–1716) invented calculus. Giuseppe
Peano (1858–1932) devised axioms for arithmetic.

For millennia, the various branches of deduction – such as logic, arithmetic,
and geometry – had been developed as separate and unrelated systems. Early
great works aiming to unify logic and mathematics were the brilliant Grundge-
setze der Arithmetik (The Basic Laws of Arithmetic) of Frege (1893) and the
monumental Principia Mathematica of Whitehead and Russell (1910–13).
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118 Deductive logic

Table 7.1. Truth-table definitions for negation,
conjunction, disjunction, implication, and equality

Assignments Not And Or Implies Equals

A B ∼B A ∧ B A ∨ B A → B A ≡ B

T T F T T T T
T F T F T F F
F T F T T F
F F F F T T

Propositional logic

Propositional logic, also called statement calculus and truth-functional logic, is
a rather elementary branch of deductive logic. Nevertheless, it is quite important
because it pervades common-sense reasoning and scientific reasoning.

A simple proposition has a subject and a predicate, such as “This apple is red”
or “Mary is coming.” Propositional logic considers only declarative statements.
Accordingly, every simple proposition has the property of having one or the
other of two possible truth-values: true (T) and false (F). Note that the truth-
value applies to the proposition as a whole, such as “This apple is red” being true
for a red apple but false for a green apple. In propositional logic, as introduced
in this section, there is no further analysis of the subject and predicate within a
proposition. But, in predicate logic, to be explained in the next section, further
analysis is undertaken. Hence, predicate logic is more complicated, subsuming
propositional logic and adding new concepts and analysis.

Proposition constants represent specific simple propositions and are denoted
here by uppercase letters like A, B, and C (except that T and F are reserved to
represent the truth-values true and false). For example, “The barometer falls”
can be symbolized by B, “It will rain” by R, and “It will snow” by S. Then, the
compound sentence “If the barometer falls, then either it will rain or it will
snow” can be expressed by “If B, then R or S.”

The most common connectives or operators are “not,” “and,” “or,” “implies,”
and “equals.” They are also termed negation, conjunction, disjunction, impli-
cation, and equality. These five connectives are denoted here by these symbols:
“∼,” “∧,” “∨,” “→,” and “≡.” The meanings of these connectives are specified
by a truth table (Table 7.1).

“Not” is a unary operator applied to a single proposition. If B is true, then
∼B is false; and if B is false, then ∼B is true. That is, B and ∼B have oppo-
site truth-values. The other connectives are binary operators applied to two
propositions. For example, “A and B,” also written as “A ∧ B,” is true when

Co
py
ri
gh
t 
@ 
20
12
. 
Ca
mb
ri
dg
e 
Un
iv
er
si
ty
 P
re
ss
.

Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e 
co
py
ri
gh
t 
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 9/27/2019 11:29 AM via JAMES MADISON UNIVERSITY
AN: 527886 ; Gauch, Hugh G..; Scientific Method in Brief
Account: s8863137.main.eds



Propositional logic 119

both A is true and B is true and is false otherwise. Simple propositions can be
combined with connectives, such as B → (R ∨ S) to symbolize the preceding
compound proposition about a barometer. Parentheses are added as needed
to avoid ambiguity. To simplify expressions, the conventions are adopted that
negation has priority over other connectives and applies to the shortest possible
sub-expression, and parentheses may be omitted whenever the order makes no
difference.

Incidentally, two other logical operators, not already specified in Table 7.1, are
important in computer design because they can be implemented with simple
transistor circuits. Joint denial of A and B, expressed by “Neither A nor B” and
symbolized by “A ↓ B,” equals the negation of “A or B” and hence is also named
“Nor.” An alternative denial of A and B, expressed by “Either not A or not B”
and symbolized by “A | B,” equals the negation of “A and B” and hence is also
named “Nand.” (To avoid potential confusion, note that this symbol “|” instead
means “or” in several computer-programming languages.) Remarkably, all of
the logical operators in Table 7.1 can be defined or replaced by joint denial
alone, or by alternative denial alone. For instance, ∼A is logically equivalent to
A ↓ A or to A | A. Likewise, A ∧ B is logically equivalent to (A ↓ A) ↓ (B ↓ B) or
to (A | B) | (A | B). Consequently, circuits using Nor and Nand operations are
extremely useful in computers. Annually, the world produces more transistors
than it produces grains of wheat or grains of rice.

Proposition variables stand for simple propositions and are denoted here by
lowercase letters like p and q. Hence, the variable p could stand for the con-
stant A or B or C. Proposition expressions are denoted here by script letters
and are formed by one or more applications of two rules: (1) any proposi-
tion constant or variable is a proposition expression; and (2) if A and B are
proposition expressions, then their negations are proposition expressions as
well as their being combined by conjunction, disjunction, implication, and
equality.

An argument is a structured, finite sequence of proposition expressions, with
the last being the conclusion (ordinarily prefaced by the word “therefore” or the
symbol “∴”), and the others the premises. The premises are intended to support
or prove the conclusion. For example, modus ponens is a valid argument with
two premises and one conclusion: A; A implies B; therefore B. Likewise, modus
tollens is the valid argument: not B; A implies B; therefore not A. Incidentally,
the full Latin names are modus ponendo ponens meaning “the way that affirms
by affirming,” and modus tollendo tollens meaning “the way that denies by
denying.” An argument is valid if under every assignment of truth-values to the
proposition variables that makes all premises true, the conclusion is also true.
Otherwise, the argument is invalid.

There are several methods for proving that an argument is valid or else
invalid, as the case may be. Different methods all give the same verdict, but one
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120 Deductive logic

Formal Propositional Logic

(1)  Language. The symbols used are as follows: ∼, →, (, ), p1, p2, p3, and so on.
(2)  Expressions. A well-formed formula (wff) is formed by one or more applications
       of two rules. (a) Each pi is a wff. (b) If A and B are wffs, then (∼A) and
       (A → B ) are wffs.
(3)  Axioms. For any wffs A, B, and C, axioms are formed by the following three
      axiom schemes:
           Axiom Scheme 1.  (A → (B → A))
           Axiom Scheme 2.  ((A → (B → C)) → ((A → B) → (A → C)))
           Axiom Scheme 3.  (((∼A) → (∼B)) → (B → A))
(4)  Rule. The rule, modus ponens, says from A and (A → B ), infer B.
(5)  Interpretation. The symbols “∼” and “→” are the logical connectives negation
      and implication, which may have associated parentheses needed to specify the
       order of operations, and the symbols p1, p2, p3, and so on, represent proposition
      variables having truth-values of either true or false. A proof is a sequence of wffs
      A1, …, AN , A such that each wff either is an axiom or follows from two previous
      members of the sequence by application of modus ponens. The final wff, A, is a
      theorem.

Figure 7.2 The elements of formal propositional logic. This logic is specified by its

language, expressions, axioms, rule, and interpretation.

method may be easier to understand or use in a given instance than is another.
The conceptually simplest method, directly reflecting the definitions of validity
and invalidity, is to construct a truth table to determine whether or not each
assignment of truth-values to the argument’s proposition variables that makes
all premises true also makes the conclusion true. Another method for proving
validity is to deduce the argument as a theorem from the axioms and rules. But
proof strategies are best left to any standard logic text.

Figure 7.2 presents a formal system for propositional logic, drawing on
Hamilton (1978:28). Some liberty has been taken to simplify this presentation.
The ordinary letters “A,” “B,” and “C” in this figure should actually be script
letters to represent proposition expressions, not merely proposition constants
as denoted by these ordinary letters elsewhere in this section.

Propositional logic is both sound and complete. Basically, this means that its
rules are correct and that no additional rules are needed. Propositional logic
is also decidable, meaning that any argument can be proven to be valid or
else invalid. For example, consider the argument: A → B; B → (C ∨ D); A ∧
∼C; ∴D. Is it valid or invalid? Some time and effort are required to render
the verdict, which turns out to be that this argument is valid. But before even
starting to assess validity, it is already known and guaranteed in advance that the
outcome is predetermined by the axioms of propositional logic and the answer
is decidable.
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Arithmetic 121

Predicate logic

Predicate logic, also called first-order logic and predicate calculus, subsumes
and surpasses prepositional logic. It adds two extensions. First, it distinguishes
between a proposition’s subject and predicate. In a conventional symbolism,
the predicate is denoted by an uppercase letter and the subject is denoted by the
following lowercase letter placed within parentheses. For instance, “This apple
is red,” with its predicate “is red” and subject “This apple,” can be symbolized
by R(a). Second, predicate logic has the existential quantifier “some” denoted by
“∃” and the universal quantifier “all” denoted by “∀.” For example, (∀x)(A(x))
means “All x are A” and (∃x)(A(x)) means “Some x is A.”

One kind or subset of predicate logic is syllogistic logic. A familiar example
is the argument: All men are mortal; Socrates is a man; therefore, Socrates is
mortal. Because of its deeper analysis distinguishing subjects and predicates and
its inclusion of existential quantifiers such as “all,” predicate logic can analyze
this argument and declare this syllogism valid. But the simpler propositional
logic cannot express or handle syllogisms.

A formal deductive system for predicate logic is about twice as complicated
as the one shown in Figure 7.2 for propositional logic (Hamilton 1978:49–
56, 71–72). By contrast, the range of theorems that predicate logic can prove
is incomparably greater than the range for propositional logic. Accordingly,
predicate logic supplies the powerful logic that lays the foundation upon which
other branches of mathematics can be constructed, including arithmetic and
probability.

Arithmetic

In the contemporary vision of deductive systems, numerous branches of math-
ematics, such as arithmetic, are all built on a foundation of predicate logic. To
build a branch of mathematics on logic, two items must be added: an interpre-
tation and some axioms. A formal language is abstract, and an interpretation
attaches a particular meaning to some symbols of a formal language, such
as arithmetic being about numbers. Additional axioms are needed because
often a mathematical statement is true (or false) because of the mathemati-
cal meanings of its terms, rather than merely the logical arrangement of its
terms. There are both logical truths and mathematical truths. Both require
axioms.

Although syllogistic logic was axiomatized by Aristotle and geometry by
Euclid more than two millennia ago, arithmetic was axiomatized only just
over a century ago in 1889 by Giuseppe Peano. His axioms can be edited
in various ways to make them somewhat more transparent or convenient.
Figure 7.3 presents a formulation with nine axioms.
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122 Deductive logic

Peano Axioms for Arithmetic

1.   0 is a natural number.
2.   For every natural number x, x = x.
3.   For all natural numbers x and y, if x = y, then y = x.
4.   For all natural numbers x, y, and z, if x = y and y = z, then x = z.
5.   For all a and b, if a is a natural number and a = b, then b is also a natural
      number.
6.   For every natural number n, its successor S(n) is a natural number.
7.   For every natural number n, S(n) = 0 is false.
8.   For all natural numbers m and  n, if S(m) = S(n), then m = n.
9.   If K is a set such that (a) 0 is in K and (b) for every natural number n, if n is in
      K, then S(n) is in K; then K contains every natural number.

Figure 7.3 The nine Peano axioms for arithmetic. The first axiom assumes that zero is a

natural number, the next four describe the equality relation, the next three describe the

successor function (where 1 is the successor of 0, 2 is the successor of 1, and so on), and

the last axiom concerns the set of all natural numbers.

Arithmetic can be developed from the Peano axioms and the inherited predi-
cate logic. For the most part, the meanings of the Peano axioms should be fairly
obvious. For instance, axiom 2 says that every number equals itself, and axiom
8 says that if m + 1 = n + 1, then m = n.

To reiterate an important point about predicate logic from the preceding
section in the present context of arithmetic, axioms fix in advance the outcome
for subsequent theorems or calculations. For example, is 871 × 592 = 515432
correct? A little effort is required to check this calculation, but before even
starting, the verdict has been predetermined by the arithmetic axioms. Actually,
this calculation is incorrect, the proper value being 515632. Precisely because the
rules of arithmetic are fixed before the game begins, arithmetic is meaningful
and rational. If different persons could get different sums for 27 + 62, then in
such a world there would be no science, and no banks either.

Many persons may miss the wonder, but Albert Einstein asked “How is it
possible that mathematics, a product of human thought that is independent of
experience, fits so excellently the objects of physical reality?” (Frank 1957:85).
Likewise, Potter (2000:17–18) expressed this wonder specifically as regards
arithmetic, remarking that “it is not immediately clear why the properties of
abstract objects [numbers] should be relevant to counting physical or mental
ones. . . . One has only to reflect on it to realize that this link between experience,
language, thought, and the world, which is at the very centre of what it is to be
human, is truly remarkable.”

Indeed, there is something wonderful about arithmetic’s effectiveness. It
may be noted, however, that the Peano axioms generate standard arithmetic,
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Common fallacies 123

whereas there also exist equally internally coherent but different nonstandard
arithmetics. For instance, in standard (Peano) arithmetic 2 + 2 = 4. But, in the
nonstandard ring arithmetic based on the circular and repeating arrangement
of integers 0, 1, 2, 3, 0, 1, 2, 3, 0, and so on, the sum of interest becomes
2 + 2 = 0. Likewise, in the ring arithmetic with just 0, 1, and 2 repeating, the
sum becomes 2 + 2 = 1. All three of these arithmetics are equally internally
coherent, although they are also different from each other.

There are occasional practical uses for nonstandard arithmetics or geome-
tries. For example, standard arithmetic says that 11 + 3 = 14. But an ordinary
clock is based on a circular arrangement of its integers from 1 to 12, so this
ring arithmetic says that 3 hours after 11 o’clock, the time is 2 o’clock, or 11 +
3 = 2. (Or, some clocks have instead the integers 1 to 24 written in a circle). For
another example, ordinary surveying or earth-measure uses ordinary geometry.
But airplane pilots traveling great distances use the non-Euclidean geometry
that Reid invented (for studying optics in a roughly spherical eye) to follow the
shortest great circle bearing on our spherical earth, thereby saving time and fuel.

But apart from these understandable exceptions, standard logic and arith-
metic and geometry prevail in daily life. While properly appreciating the wonder
of arithmetic, part of the reason that (standard) arithmetic fits with our expe-
riences in the physical world is that the choice of standard over nonstandard
arithmetic has been guided preemptively by our interests and needs as incar-
nate beings living in the physical world. That is, in choosing an arithmetic (or
geometry or whatever), coherence is not our only criterion but also fit with
our experiences of the world. Hence, in the mathematical world of coherent
arithmetics, one can obtain 2 + 2 = 0 or 2 + 2 = 1 or 2 + 2 = 4. However, in
the physical world of actual objects and events, standard arithmetic is uniquely
appropriate. Two apples plus two apples equals four apples.

Common fallacies

Ever since Aristotle’s Sophistical Refutations, logicians have been providing help-
ful analyses and classifications of logical fallacies. Furthermore, science educa-
tors report that “all the standard logical fallacies, known since Aristotle’s day,
are routinely committed by science students” (Matthews 2000:331).

There are many fine books and resources on fallacies. But the book by Madsen
Pirie, with its generous list of 79 fallacies, is outstanding because of its fun
rhetoric in the guise of a naughty sophist. He explained: “This book is intended
as a practical guide for those who wish to win arguments. It also teaches how to
perpetrate fallacies with mischief at heart and malice aforethought. . . . I have
given the reader recommendations on how and where the fallacy may be used
to deceive with maximum effect. . . . In the hands of the wrong person this is
more of a weapon than a book, and it was written with that wrong person in
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124 Deductive logic

Figure 7.4 The logical fallacy argumentum ad lapidem, argument to a stone. Samuel

Johnson vigorously kicks a stone, attempting to refute the idea that the physical world

does not exist, while an unimpressed George Berkeley observes. (This drawing by Carl R.

Whittaker is reproduced with his kind permission.)

mind” (Pirie 2006:ix–x). This is the book that everyone needs as we set about
the all-important business of getting our own way!

The study of fallacies best begins with its opposite, the study of right thinking.
Knowing the genuine article makes its counterfeits more obvious. Recalling the
PEL model in Chapter 5, the essence of scientific thinking is evidence that is
admissible relative to the presuppositions and relevant relative to the hypotheses,
as well as deductive and inductive logic to draw conclusions and weigh evidence.
The three italicized words emphasize the principal opportunities for defects:
inadmissible evidence, irrelevant evidence, and fallacious logic. The fourth and
final category of fallacies reviewed in this section involves a personal rather than
a procedural defect, failure of will to pursue the truth.

Inadmissible Evidence. The argumentum ad lapidem (argument to a stone)
appeals to inadmissible evidence. This fallacy is named for a famous incident
depicted in Figure 7.4. George Berkeley had argued that only minds and ideas
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Common fallacies 125

exist, not physical objects and events, as mentioned in Chapter 5. When Dr.
Samuel Johnson was told by James Boswell that this argument is impossible to
refute, he vigorously kicked a stone, exclaiming “I refute it thus.”

But as Pirie (2006:101–104) observed, Johnson was not so much refuting
Berkeley’s argument as ignoring it. Johnson was presuming a realist interpre-
tation or ontology regarding the empirical evidence provided by sight or feel
or sound or any other sense, which is precisely the matter in dispute given
Berkeley’s idealist ontology. As emphasized in Chapter 5, the existence and
comprehensibility of the physical world are presuppositions of mainstream sci-
ence, not conclusions of science (or philosophy either). To think otherwise is to
commit the argumentum ad lapidem fallacy. Berkeley could accept that John-
son had an experience of kicking a stone and could even share that experience
with him. But Berkeley would not infer from this experience the metaphysical
theory that the stone has an independent physical existence. Presuppositions
cut deeper than evidence.

Irrelevant Evidence. Several fallacies appeal to evidence that is admissi-
ble, given the common-sense presuppositions of mainstream science, but that
evidence is irrelevant because it fails to bear on the credibilities of the vari-
ous hypotheses under consideration. One such fallacy is the argumentum ad
hominem (argument to the man), which attacks the person promoting the dis-
liked idea rather than the idea itself. For instance, a theory could be attacked by
saying its proponent is a teacher at a small community college.

Another fallacy is the red herring. This draws attention away from the original
argument to some other matter that is irrelevant but provides an easier target
for refutation.

An alluring fallacy for scientists is unobtainable perfection, or at least excessive
perfection. This fallacy discredits a result by requiring greater accuracy or scope.
For instance, if a paper under review compares methods A and B, a reviewer
might say that it must also compare method C in order to be publishable. But
simply to complain that more could be done is irrelevant because this is always
the case. Rather, the relevant criteria are whether that paper adds to what was
known before and whether it has some theoretical interest or practical value.
Also, adding method C may be a good idea, but the editor might intervene and
propose this as a suggestion or recommendation rather than a requirement.

Fallacious Logic. Most logical fallacies obtain their apparent plausibility from
being subtle variations on other arguments that are valid. Logical fallacies are
especially deceptive when their conclusions are already believed or desired.

Fallacies result from invalid variations on the valid argument modus ponens:
A; A implies B; therefore B. The implication “A implies B” consists of the
antecedent A and the consequent B. Hence, the valid argument modus ponens
affirms the antecedent. Similarly, the valid argument modus tollens denies the
consequent: not B; A implies B; therefore not A. But other variations are invalid.
Affirming the consequent is the logical fallacy: B; A implies B; therefore A.
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126 Deductive logic

An example is: The plants are yellowish; if plants lack nitrogen, then they
become yellowish; therefore the plants lack nitrogen. Likewise, denying the
antecedent is also invalid: not A; A implies B; therefore not B. A common
version of this fallacy is the argument from missing evidence. However, an
observation of missing evidence A has no force in rejecting theory B unless it
is supplemented with an additional argument showing that evidence A would
be expected to exist, and perhaps even to be abundant, were theory B true.
Furthermore, an honest evaluation of theory B would also consider whether
some other kinds of evidence are relevant and available rather than just eagerly
pursuing the easiest possible way to discredit B.

Syllogisms have 256 possible forms, of which only 24 are valid. An example
of a valid syllogism is: Socrates is a man; all men are mortal; therefore Socrates
is mortal. Because most forms are invalid, apart from some training in logic,
syllogisms offer numerous opportunities for tricky fallacies.

A false dilemma mentions fewer alternatives than actually exist. In the false
dilemma “A or else B; not A; therefore B,” the logical form is valid, but the
first premise “A or else B” is false because of additional possibilities such as
C. For example, “Either apply nitrogen fertilizer or get yellowish plants” is a
false dilemma for many reasons, including the possibilities that a particular soil
already has adequate nitrogen without adding fertilizer, or that a virus causes
yellowish plants despite adequate fertilizer. Of course, the opposite fallacy also
occurs: the “optionitis” of believing that one has more options than reality (or
feasibility) actually offers. Some dilemmas are real.

A variant on the false dilemma is the straw-man argument. The logical form
is this same “A or else B; not A; therefore B,” where A represents an opponent’s
position and B the favored position. However, the premise “not A” is supported
by attacking the opponent’s weakest evidence or a simplistic misrepresenta-
tion of the opponent’s position. An honest refutation of the opponent’s posi-
tion must instead represent A accurately and tackle its strongest evidence and
arguments.

Yet another variant on the false dilemma is the argumentum ad ignorantiam
(argument from ignorance). This fallacy attempts to drive opponents to accept
an argument unless they can find a better argument to the contrary. For example,
an environmentalist might say “We cannot prove that this pesticide is safe, so
we must assume that it is dangerous and outlaw its use.” There may or may not
be some other good arguments against this pesticide’s safety, but an argument
from ignorance is not a good reason. The implicit dilemma in an appeal to
ignorance is “Give me a better argument, or else accept my argument.” But
the unmentioned third option is to admit current inability to construct a
better argument while still either rejecting the offered argument or suspending
judgment.

Failure of Will. Given the dishonorable nature of failure of will, this fourth
and final category of fallacies is best discussed by adopting Pirie’s guise as a
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Common fallacies 127

naughty sophist. After all, adroit evasion of knowledge, while still giving every
appearance of energetic pursuit of knowledge, requires considerable skill!

Three fallacies are useful to conceal failure of will: privileged cynicism, secret
alliance, and personal exemption. Admittedly, these are imperfect means for
putting a pretty face on failure of will. But these three fallacies work as well
as can be expected, given the inherent challenges of this naughty business.
Their principal merits are that these fallacies are unrivaled in their resistance to
remediation, and sometimes they can even achieve self-deception!

An effective fallacy for implementing failure of will is privileged cynicism:
When there is a spectrum of positive to negative opinions about something’s
merit, the most negative, skeptical, cynical opinion is privileged by being pre-
sented and perceived as automatically the view of the sophisticated elite – unlike
the naı̈ve and despised view of the ignorant commoners. For instance, the com-
moners (including most practicing scientists!) may think that much knowledge
is readily attained and perfectly solid, whereas presumably the academic elite is
steeped in postmodern rejection of knowledge claims, so privileged cynicism
declares that automatically the latter group has the more sophisticated view. A
skilled professor can wield this fallacy to encourage students in a cynical attitude
that then becomes the students’ passport into the alluring world of the cultural
elite. Inside such a culture, cynicism equals sophistication.

This fallacy of privileged cynicism applies readily to science. Students can
be lured easily into the mighty gratifying feeling that they, being superior to
the gullible commoners, are getting the real, dirty story on what science is.
The fallacy of privileged cynicism has great appeal to persons who already feel
disappointed or disenfranchised in life for any reason.

A huge advantage of privileged cynicism is its ease. A lackluster high school
student, let alone a bright college student, can learn five skeptical or cynical
remarks in as many minutes. Furthermore, merely two or three pages suffice for
a skilled writer to display a cynical view of science in all its glory, which seems
to call for automatic assent from any reader wishing to be numbered among the
sophisticates who are in the know. By contrast, a satisfactory account of actual
scientific method takes work to write and work to read. Hence, the hard-won
sophistication of a working scientist cannot possibly compete with the cynical
version of “sophistication” in terms of being offered on the cheap.

A second fallacy for implementing failure of will is secret alliance. This won-
derfully subtle fallacy involves fighting an intense battle not so much for its own
intrinsic importance as for its strategic value in defending an ally in a larger war,
while that ally receives so little explicit mention as to remain virtually a secret.
Thereby, the real motivations for the battle are not obvious, perhaps even to
many of the battle’s most prominent combatants on both sides.

The main example in the realm of science is the notorious “science wars”
reviewed in Chapter 4. The intensity of this intellectual war, augmented by
melodramatic and inflammatory rhetoric, is astonishing and perhaps even
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128 Deductive logic

mystifying. Why is it so intense? One might suspect that often the underlying
motivations have not been expressed in an entirely forthright manner. Indeed,
whether a person’s intellectual verdict is that the prospects for human knowledge
are dim or bright, and whether that person’s emotional reaction to this verdict is
sad or happy, are two separate matters. Rather than the usual giddy triumph over
vanquished truth, why not express instead a crushing sadness over unrelenting
ignorance? This love of ignorance and uncertainty demands some explanation!

Occasionally, there are revealing remarks that arouse suspicions of a secret
alliance, although that alliance may be subtle enough to operate at an uncon-
scious level. For example, philosopher Brown (1987:230) remarked, “I have
offered here one detailed argument for the now familiar thesis that there
is no fundamental methodological difference between philosophy and sci-
ence. . . . [But] it has become progressively clearer that the sciences cannot
provide certainty and have no a priori foundation. . . . [Admittedly,] earlier
thinkers believed that both science and philosophy provide certain knowledge
of necessary truths. We must conclude that neither do. . . . [The] human intel-
lect . . . seems unable to grasp a final truth.” So, chastened science has no truth,
and now philosophy can enjoy the same!

For another example, science educator Meyling (1997) mentioned one of
his high school students who began with a common-sense, realistic view of
science, but in the end she accepted her teacher’s “fallibilistic-pluralistic model
of epistemology” of “existential uncertainty” and “the tentativeness of science.”
Meyling quoted her saying that “Truth is relative, we have to get used to that,
there are only things that are more correct than others, but there is nothing that
is absolutely correct. . . . When you think you know the truth, you force others
to think and live that way. . . . This is a claim on absoluteness that cannot be
justified – by no one and by no theory.” Meyling commented that “I believe that
this recognition is far more important than the knowledge about a whole set of
scientific ‘facts’,” and he was particularly pleased that his student extended her
new skeptical epistemology to the “ethical level.” He mentioned a letter he had
received, in which “Sir Karl R. Popper was very pleased with this quote.” But
Meyling’s enthusiasm and Sir Karl’s praise notwithstanding, some parents may
feel that a science classroom is not a fitting place to encourage ethical relativism
or skepticism in other persons’ children.

The rather popular idea that science is the sole source and guardian of
empirical evidence, and hence of all objective and public knowledge, is a mistake
that can seemingly justify failure of will in other realms outside science. But this
mistake cannot be supported by mainstream science, which maintains the exact
opposite: that scientific thinking, with public evidence as its foremost feature,
is also applicable beyond science itself in the humanities and everyday life. Nor
can it be supported by insistence on methodological naturalism because this is a
stipulatory convention within natural science that is inherently inappropriate in
many other disciplines that also use empirical and public evidence. Nevertheless,
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Summary 129

this mistaken idea of scientism is easily motivated and long sustained by the
most potent of fallacies, failure of will. Frankly, for those persons who heartily
want empirical evidence to work for technological comforts and not to work
for worldview inquiries, simplistic arguments – preferably expressed in a mere
sentence or two – should provide welcome and adequate reassurance. On the
other hand, for other persons who heartily want empirical evidence to work
for technological comforts and scientific discoveries and worldview inquiries,
energetic study of mainstream science and mainstream philosophy should prove
fruitful. Getting the most knowledge and benefit from empirical and public
evidence requires engaging both the sciences and the humanities, in alignment
with the appealing AAAS (1990) vision of science as a liberal art participating
in an exciting wider world.

A third and final fallacy for implementing failure of will is personal exemp-
tion. This fallacy involves mastering fallacies for the purpose of dismantling
and evading other persons’ arguments, while ignoring the responsibility of
detecting and correcting one’s own fallacies, as if one has a personal exemption
from dealing with truth and reality. The following chapters on probability and
statistics examine additional fallacies.

Summary

Logic is the science of correct reasoning and proof. It addresses the relation-
ship between premises and conclusions, including the bearing of evidence
on hypotheses. A deductive argument is valid if the truth of its premises
entails the truth of its conclusions and is invalid otherwise. Formal deduc-
tive logic begins with a language, axioms, and rules and then derives numerous
theorems.

As applied in science, deductive logic argues with certainty from an assumed
model to particular expected data. By contrast, inductive logic argues with
probability from particular actual data to an inferred general model. In its
pursuit of realism and truth, scientific thinking alternates deduction, reasoning
from mind to world, and induction, reasoning from world to mind.

The first deductive systems to be axiomatized were syllogisms by Aristotle and
then geometry by Euclid. Medieval philosopher-scientists advanced deductive
logic considerably. Arithmetic was finally axiomatized only just over a century
ago by Peano. The modern vision of deduction, which unites all of its branches
into a single unified system built on a base of predicate logic, began with
stunningly brilliant work by Frege and by Whitehead and Russell.

The formal system for propositional logic presented here has three axioms
and one rule. The axioms for predicate logic are about twice as complicated, but
the resulting range of theorems that predicate logic can prove is incomparably
greater than the range for propositional logic. Peano arithmetic is presented
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130 Deductive logic

with nine axioms. Probability is another branch of deductive logic, but that
topic is deferred to the next chapter.

Fallacies have received much interest since Aristotle. Fallacies are best under-
stood and categorized after first recalling the key resources of scientific thinking:
admissible and relevant evidence, and deductive and inductive logic. Accord-
ingly, three major categories of fallacies are inadmissible evidence, irrelevant
evidence, and fallacious logic. The fourth and final category of fallacies reviewed
in this chapter involves a personal rather than a procedural defect: failure of
will to pursue the truth.

Study questions

(1) What are the three interrelated differences between deductive and inductive
arguments? Is deduction superior to induction, or are they complementary
in scientific thinking?

(2) What are the truth-table definitions for the logical operators Nor and Nand?
Why are these operators so extremely useful in computer circuits?

(3) What two main sorts of considerations inform axiom choice for any stan-
dard version of a deductive system, such as standard logic or standard
arithmetic? What are some applications for nonstandard arithmetic and
non-Euclidean geometry?

(4) What is the fallacious argumentum ad lapidem, the argument to a stone? Can
you contrive an alluring example? How does this fallacy relate to science’s
presuppositions?

(5) Failure of will to pursue the truth can be implemented by various means,
including privileged cynicism, secret alliance, and personal exemption. Give
an example of each. Might failure of will be a contributing factor in attacks
on science’s rationality? Explain your answer.
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Probability

Suppose the Smiths tell you that they have two children and show you the
family photograph in Figure 8.1. One child is plainly a girl, but the other is
obscured by being behind a dog so that its gender is not apparent. What is the
probability that the other child is also a girl? This probability question might
seem quite simple. But the fact that this problem appeared in the pages of
Scientific American is a hint that it might actually be tricky (Stewart 1996). Later
in this chapter, this problem will be solved, but for now, just remember your
initial answer for comparison with the correct solution.

Probability is the branch of deductive logic that deals with uncertainty. Logic
occupies three chapters in this book on scientific method, with this chap-
ter being the middle one. The previous chapter concerned other branches of
deductive logic: propositional logic, predicate logic, and arithmetic. The next
chapter concerns inductive logic, also called statistics. Recall that the PEL model
identifies three inputs needed to reach any scientific conclusions: presupposi-
tions, evidence, and logic. Accordingly, science needs functional deductive and
inductive logic.

Another reason why the study of probability is important is that errors
in probability reasoning are among the most common and detrimental of
all fallacies. Probability errors prompt physicians to administer suboptimal
treatments. Probability errors prompt juries to render wrong verdicts. And
probability errors also cost scientists plenty. Correct probability reasoning is
important because scientific research and daily life alike are full of unavoidable
practical decisions that must be made on the basis of imperfect information and
uncertain inferences. And yet, probability reasoning is rather difficult because it
involves precise distinctions and complex relationships that are often subtle and
sometimes counter-intuitive. Consequently, some basic training in probability
theory can confer substantial benefits.
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132 Probability

Figure 8.1 Children in a family. The Smith family has two children. One is a girl, but the

other is obscured by the family dog. Reasoning with conditional probability can calculate

the probability that the hidden child is also a girl. (This drawing by Susan Bonners is

reproduced with her kind permission.)

Probability concepts

There are two primary concepts of probability, one pertaining to events and
one to beliefs. An objective or physical probability expresses the propensity
of an event to occur. For example, upon flipping a fair coin, the probability
of heads is 0.5 (because there are two possible events or outcomes, namely,
heads or tails, and they are equally likely). A subjective or personal or epistemic
probability is the degree of belief in a proposition warranted by the evidence.
For example, given today’s weather forecast, a given person may judge that
the belief “It will rain today” has a 90% probability of being true. Of course,
personal and physical probabilities are often interrelated, particularly because
personal beliefs are often about physical events. Most events and propositions
with low probabilities are not or will not be actualized or true, whereas most
with high probabilities are or will be actualized or true.

The concept of probability occurs in a variety of different contexts. A sin-
gle, unified probability theory needs to work in all of probability’s diverse
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Probability concepts 133

applications. Consider the following eight common-sense usages of the con-
cept of probability:
(1) A fair coin has a probability of 0.5 of heads, and likewise 0.5 of tails; so the

probability of tossing two heads in a row is 0.25.
(2) There is a 10% probability of rain tomorrow.
(3) There is a 10% probability of rain tomorrow given the weather forecast.
(4) Fortunately, there is only a 5% probability that her tumor is malignant, but

this will not be known for certain until the surgery is done next week.
(5) Smith has a greater probability of winning the election than does Jones.
(6) I believe that there is a 75% probability that she will want to go out for

dinner tonight.
(7) I left my umbrella at home today because the forecast called for only a 1%

probability of rain.
(8) Among 100 patients in a clinical trial given drug A, 83 recovered, whereas

among 100 other patients given drug B, only 11 recovered; so new patients
will have a higher probability of recovery if treated with drug A.

All eight examples use the same word, “probability.” To a first approximation,
the meaning of probability is the same in all of these examples. Furthermore,
in informal discourse, other words could be used with essentially the same
meaning, such as “chance” or “likelihood.” The common-sense meanings of
these examples should be entirely clear to everyone. Nevertheless, these eight
examples express a variety of distinguishable concepts.

Example 1 is essentially a definition or theoretical description of what is
meant by a “fair” coin, that it has equal chances of landing heads or tails,
whether or not any actual coin is exactly fair. It then states the deductive impli-
cation regarding tossing two heads in succession. Example 2 is solidly empirical,
obviously purporting to convey information about the physical world, namely,
about the probability of rain. Example 2 also differs from Example 1 in that
the first example’s event (a coin toss) is a repeatable event, both in theory and
in practice, whereas the second example’s event (rain in a particular place and
day) is a singular, nonrepeatable event. Incidentally, Example 1 expresses its
probabilities as numbers within the range of 0 to 1, whereas Example 2 mul-
tiplies such values by 100 to yield a percentage, but this cosmetic difference is
not particularly significant.

Example 3 is based on Example 2 but adds an explicit statement about the
evidence in support of its assertion. Hence, the unconditional probability in
Example 2 is a function of only one thing, the event of rain; whereas the
conditional probability in Example 3 is a function of two things, the event
of rain given the evidence of the weather forecast. Example 4 expresses a 5%
probability of malignancy. In fact, however, the tumor is either benign or
malignant – it is not 5% malignant and 95% benign. Hence, this probability
value of 5% must refer to the present state of knowledge, as contrasted with the
actual status of the tumor. This interpretation is reinforced by the expectation
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134 Probability

that further knowledge after surgery next week will modify this probability,
hopefully to a zero probability of malignancy rather than to the dreaded 100%.
Hence, the concept of probability must be capable of handling the addition of
new evidence to an existing body of old evidence.

Example 5 says that Smith has a better chance of winning the election than
does Jones, but it does not specify whether Smith’s chance is great (say, more
than 0.5) or small. The problem is that no information is offered about the
presence or absence of other candidates. Also note that this example uses no
numbers to express its probabilities but rather merely expresses a compara-
tive relationship of one probability being “greater” than another. Example 6 is
the first that explicitly recognizes the existence and role of the person express-
ing a probability judgment, “I believe that . . . .” Furthermore, this example is
subjective – evidently other persons might come up with different estimates.
For instance, someone with no knowledge whatsoever of this woman’s plans
might pick a probability of 50% to represent maximal uncertainty or ignorance.
Hence, the concept of probability needs to be able to model ignorance as well
as knowledge.

Example 7 shows probability taking a role not only in personal inferences
and beliefs but also in personal decisions and actions. It weighs the personal
cost or bother of carrying an umbrella against the potential benefit of not
getting soaked. Finally, Example 8 uses data on two recovery rates to derive a
conclusion about a probability judgment. Its logical progression is therefore
the reverse of that in the first example. Example 1 is representative of deductive
thinking that begins with a model or theory (about a fair coin) and then derives
conclusions regarding expected observations (of two heads in succession). By
contrast, Example 8 is representative of inductive thinking that progresses in
the reverse direction. It begins with specific actual observations (regarding
83 and 11 recoveries) and then supports a general theory (about two drugs’
relative merits). Hence, the concept of probability is used in both deductive and
inductive settings.

In review, a satisfactory theory of probability must encompass events and
beliefs, theoretical and physical entities, repeatable and singular events, numer-
ical and comparative expressions, unconditional and conditional probabilities,
old and new evidence, knowledge and ignorance, inferences and decisions, and
deductive and inductive contexts. Probability concepts must be sophisticated
enough to handle complex scientific problems and yet be sensible enough to
express simple common-sense applications.

Four requirements

Probability theory progresses by selecting axioms and then deriving theorems.
But what do we want this theory to do? What are its intended applications?
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Four requirements 135

What are the requirements for a satisfactory theory? These requirements are best
addressed near the outset of this chapter, even before axiom choice in the next
section. Four requirements are specified here, largely following the exceptionally
wise and practical book on probability by Sir Harold Jeffreys (1983).
(1) General. An adequate theory of probability must provide a general method

suitable for all of its intended applications, including the eight examples
of probability concepts in the preceding section. As will be explained in
the next chapter, the inductive reasoning in statistics requires no additional
axioms beyond those for the deductive reasoning in probability – although
decision theory does require one additional axiom. Hence, this chapter’s
choice of axioms is intended to cover both probability and statistics.

(2) Coherent. The theory of probability and statistics must be coherent or
self-consistent. It must not be possible to derive contradictory conclusions
from the axioms and any given dataset. Furthermore, all axioms must be
stated explicitly, and all subsequent theorems must follow from them. The
number of axioms must be small in order to minimize the number of
apparently arbitrary choices and to give the foundations great simplicity
and clarity.

(3) Empirical. Probability conclusions must be dominated by empirical evi-
dence, not by any presuppositions. Accordingly, probability axioms must
be applicable to the physical world but not say specific things about it. For
example, consider the scientific finding that the probability is 89.28% that
a radioactive decay of a potassium-40 atom emits a positron. Probability
theory can be used in this context because it contains no presuppositions
about this particular probability, thereby leaving conclusions free to be
determined by the evidence. Rather, the only legitimate presupposition of
science (including probability theory), which is necessary to render empir-
ical evidence admissible, is that the physical world is real and comprehen-
sible, as was explained in Chapter 5.

(4) Practical. Probability theory must be practical, applicable to real experi-
ences and experiments within reach of human endowments and capacities.
It must not require impossible experiments or calculations. The theory
must provide for occasional revisions of erroneous scientific inferences
because some mistakes are inevitable. What is required is not perfection
but rather recoverability in the light of better analysis or more data. Fur-
thermore, all theories of deduction, including probability, have been shown
to have some limitations and imperfections, given sufficient statistical and
philosophical inspection – so this must be accepted as a permanent and
irremediable situation. But it is better to have a probability theory that
can do only 99.999% of what all scientists and philosophers could want
and yet is tidy and robust, rather than going after that last 0.001% with
a dauntingly erudite and disgustingly complex theory that would still be
short of perfection.
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136 Probability

Kolmogorov Axioms for Probability 

1.  The probability of event E is a non-negative real number P(E ) ≥ 0.
2.  The probability of the conjunction of all possibilities Ω is P(Ω) = 1.
3.  For mutually exclusive events E1, E2, …, the probability of this conjunction of
     events equals the sum of the individual probabilities:
     P(E1 ∪ E2 ∪ …) = P(E1) + P(E2) + ….     

Figure 8.2 The three Kolmogorov axioms for probability. They were formulated by Andrey

Kolmogorov in 1933.

Probability axioms

Some notation is needed to express probability axioms. The probability of
event or belief X is denoted by P(X). The negation of X is denoted by ∼X. The
members of a set are listed in brackets, such as {1, 2} being the set composed
of the integers 1 and 2. The union of X and Y is designated by X ∪ Y, the set
containing everything that belongs to X or Y or both. The intersection of X and
Y is designated by X ∩ Y, the set containing everything belonging to both X and
Y. For example, if X = {1, 2} and Y = {2, 3, 4}, then the union is X ∪ Y = {1, 2,
3, 4} and the intersection is X ∩ Y = {2}. By definition, two sets are mutually
exclusive if they have no members in common, such as {2} and {3, 4}. Also,
by definition, sets are jointly exhaustive if there are no other possibilities. The
universal set of all possible outcomes is denoted by �.

Figure 8.2 gives the Kolmogorov (1933) axioms for probability. Remarkably,
from these three simple axioms, as well as the inherited axioms of predicate
logic and arithmetic, all probability theorems can be derived.

For instance, if the probability of X is 0.7, what is the probability of ∼X? None
of these three axioms can provide an answer for this question. However, the
required theorem can be derived readily from these axioms in order to calculate
the answer. The union X ∪ ∼X is a universal set of all possible outcomes �,
so axiom 2 yields P(X ∪ ∼X) = P(�) = 1. Because X and ∼X are mutually
exclusive, axiom 3 yields P(X ∪ ∼X) = P(X) + P(∼X). Combining these two
results gives P(X) + P(∼X) = 1, and finally rearranging terms yields P(∼X) =
1 – P(X). Hence, if the probability of rain equals 0.7, then the probability of no
rain equals 0.3.

A conditional probability is the probability of X given Y, or X conditional on
Y, and is denoted by P(X | Y) where the vertical bar “|” means “given.” It can
be defined in terms of unconditional probabilities: P(X | Y) = P(X ∩ Y) / P(Y),
provided that P(Y) does not equal 0. As a simple example, assume that a class
has six girls with blue eyes and four with brown eyes, and five boys with blue
eyes and eight with brown eyes. The conditional probability that a student has
blue eyes, given that the student is a girl, is P(blue | girl) = 6 / (6 + 4), or 0.6.
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Probability axioms 137

The conditional probability that a student has blue eyes, given that the student
is a boy, is P(blue | boy) = 5 / (5 + 8), or about 0.38. For comparison, the
unconditional probability that a student has blue eyes is P(blue) = (6 + 5) /

(6 + 4 + 5 + 8), or about 0.48.
Conditional probabilities can be surprisingly tricky. Returning to the opening

question about the Smith family photograph shown in Figure 8.1: If the Smiths
have two children, one of whom is a girl but the other is obscured by the family
dog, what is the probability that the other is a girl? Because the obscured child
is a specific child, the correct answer is simply 1/2. The same answer applies to
any other specific child, such as the youngest child or the oldest child.

However, a different question can have a different answer. Consider instead
the question: If the Millers have two children, one of whom is a girl, what is
the probability that the other is a girl? Let B and G denote boy and girl, and
make the simplifying assumptions that P(B) = P(G) = 1/2 and that gender is
an independent factor (although, in fact, boys are slightly more numerous than
girls and gender is not independent in the rare case of identical twins – but the
topic here is probability theory rather than reproductive biology). Then there
are four equally probable gender sequences for the Miller children with the
letters arranged in order of birth: BB, BG, GB, and GG. Because we know that
the Millers have at least one girl, the sequence BB is eliminated. That leaves
three equally likely cases, and in just one of those cases (GG) is the other child
also a girl. Hence, the required conditional probability that the other child is a
girl is actually 1/3. Therefore, far from being equally likely that the other child
is a boy or a girl, actually it is twice as likely that the other child is a boy.

At this point, you might recall your initial answer to the probability problem
about the Smith family photograph, which was posed at the start of this chapter,
in order to check whether you had gotten it right. But, even if your answer
was correct, was it more than a lucky guess? Was the reasoning behind your
answer adequately precise so that you could distinguish and solve both of these
probability problems? The crucial difference between these two problems is that
the Smith family has two specific children, the visible child and the obscured
child, and only the obscured child might be a boy; whereas the Miller family
has two unspecific children, so either child might be a boy.

The Kolmogorov axioms are not uniquely suitable for probability because
other axiom sets can be chosen that are equivalent and exchangeable, supporting
the same probability theorems. For instance, Salmon (1967:59–60) used four
axioms expressed with conditional probabilities, the first being that P(X | Y) is
a single number 0 ≤ P(X | Y) ≤ 1. These axioms are equally suitable. But some
choices may render the proof of a given theorem somewhat harder or easier.

Even as there are nonstandard logics, nonstandard arithmetics, and non-
Euclidean geometries, so also there are nonstandard probability theories result-
ing from unusual axioms. Burks (1977:99–164) gave examples. The standard
and nonstandard probability theories are equally internally coherent or con-
sistent, although they contradict each other. A probability theory based on
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138 Probability

the Kolmogorov axioms or on any equivalent and exchangeable set of axioms
suits the four requirements specified in the previous section, but a nonstandard
theory does not.

Probability axioms serve to enforce coherence among a set of probability
assignments and to derive certain probabilities from others. But they do little to
provide probability assignments. Instead, that job is done by probability rules.
The main one is the so-called straight rule of induction. It says that “If n As
have been examined and m have been found to be Bs, then the probability that
the next A examined will be a B is m / n” (Earman 2000:22). For instance, if 200
university students are surveyed and 146 report that they got a flu shot, then
the probability for another student having gotten this shot is 146/200 or 73%.
Of course, one would trust this estimate or prediction more if the survey had a
random sample of the students – rather than all athletes, or all women, or all
graduate students – because special subgroups might introduce a bias.

Besides enforcing coherence, probability axioms also make probabilities
meaningful. Given the Kolmogorov or equivalent axioms, probabilities are
scaled in the range 0 to 1, so P(X) = 0 means X is impossible, P(X) = 1 means X
is certain, and P(X) = 0.5 means that X and ∼X are equally likely. But without
probability axioms, P(X) = 0.3 or P(X) = 817.7 or whatever would be utterly
meaningless, communicating nothing about the probability of X. Likewise,
given the probability axioms and theorems, P(X) = 0.7 has a clear implication
for P(∼X); whereas, without a coherent probability theory, there would be no
implication whatsoever. Incidentally, the same sentiments apply to arithmetic.
That four apples plus three apples equals seven apples is meaningful given
the coherent and meaningful context provided by standard arithmetic axioms
and theorems; but, without that context, an isolated arithmetic assertion about
seven apples would lack meaning utterly. This larger context may be informal
and implicit in common sense or may be formal and explicit in probability
theory; but, in either case, coherence is essential for meaning in any kind of
deductive or inductive reasoning.

Bayes’s theorem

For millennia, there had been interest in quantifying probabilities for gambling
and other applications, but exact mathematical formulations developed rela-
tively recently. Early contributors were Pierre de Fermat (1601–1665), Blaise
Pascal (1623–1662), Christiaan Huygens (1629–1695), Jakob Bernoulli (1654–
1705), Abraham de Moivre (1667–1754), and Daniel Bernoulli (1700–1782).
They explored probability in its deductive setting, reasoning from a given model
to expected observations.

The first person to explore probability in its inductive setting, reasoning in the
opposite direction from actual observations to the model, was Thomas Bayes
(1702–1761), whose seminal paper was published posthumously in Bayes (1763)
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Bayes’s theorem 139

by his friend Richard Price. Soon thereafter, Pierre-Simon Laplace (1749–1827)
independently discovered Bayes’s theorem in 1774 and further developed this
inductive reasoning, which was called “inverse probability.” But then, in the
1920s, an alternative approach called frequentist statistics was developed, but
that story is better told in the next chapter. The seminal paper by Bayes (1763)
is readily available on the Internet and has also been reproduced by Barnard
(1958) and Swinburne (2002:117–149).

A simple form of Bayes’s theorem is:

P(A |B) = [P(B |A) × P(A)]/P(B). (8.1)

Each term has a conventional name. P(A | B) is the conditional probability of
A given B, also called the posterior probability of A. P(B | A) is the conditional
probability of B given A, also called the likelihood. P(A) is the unconditional
probability of A, also called the prior probability of A. P(B) is the unconditional
or prior probability of B.

Bayes’s theorem can be derived easily from the definition of conditional
probability. Recall the definition from the previous section that P(A | B) =
P(A ∩ B) / P(B), so likewise P(B | A) = P(A ∩ B) / P(A). Rearranging and
combining these two equations yields P(A | B) × P(B) = P(A ∩ B) = P(B |
A) × P(A). Finally, dividing the left and right sides of this equation by P(B),
provided that P(B) does not equal 0, yields the simple form of Bayes’s theorem
stated previously.

The salient feature of Bayes’s theorem is that it relates the reverse conditional
probabilities P(A | B) and P(B | A). These two quantities always have differ-
ent meanings and usually have different numerical values, sometimes wildly
different.

In an important application, let H denote a hypothesis from some theory or
model and E denote some evidence or data. Then, a quantity of the form P(H |
E) represents inductive reasoning from given evidence to an inferred hypothesis,
whereas the reverse conditional probability P(E | H) represents deductive rea-
soning from a given hypothesis to expected evidence. Recall that these opposite
reasoning directions of deduction and induction were depicted in Figure 7.1.

Bayes’s theorem is used by statisticians for many purposes, including esti-
mating quantities and testing hypotheses. A convenient form for testing two
competing hypotheses H1 and H2 in light of evidence E is the ratio form:

P(H1|E )

P(H2|E )
= P(E |H1)

P(E |H2)
× P(H1)

P(H2)
. (8.2)

This equation may be read as the posterior ratio equals the likelihood ratio
times the prior ratio. For example, if initial considerations give hypotheses H1

and H2 a prior ratio of 1/5 favoring H2 and a new experiment gives them a
likelihood ratio of 200/1 favoring H1, then the posterior ratio of 40/1 reverses
the initial preference to instead favor H1.
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140 Probability

This middle term, the likelihood ratio P(E | H1) / P(E | H2), is also called
the Bayes factor. It constitutes an alternative to posterior probabilities or ratios
for reporting the results from a Bayesian analysis of some evidence (Kass and
Raftery 1995). A large Bayes factor would favor H1, a small factor would favor
H2, and a factor near 1 would be rather uninformative.

Another form of Bayes’s theorem for two hypotheses is convenient for solving
some probability problems:

P(H1|E ) = P(E |H1) × P(H1)

[P (E |H1) × P (H1)] + [P (E |H2) × P (H2)]
. (8.3)

Note that in order to solve for P(H1 | E) on the left, four quantities must be
known, as specified on the right. However, in the special case that H1 and H2

are mutually exclusive and jointly exhaustive, either P(H1) or P(H2) suffices
for determining both of them because of the trivial relationship that P(H1) +
P(H2) = 1. Hence, to solve for P(H1 | E), the required probabilities are P(E |
H1), P(E | H2), and either P(H1) or P(H2).

A nice little application of Bayes’s theorem from statistician Sir Ronald A.
Fisher (1973:18–20) concerns black and brown mice. The gene for black fur (B)
is dominant over the gene for brown (b), so the homozygous BB and heterozy-
gous Bb are black, whereas the homozygous bb is brown. Now suppose that a
female, known to be heterozygous Bb (because her parents were BB and bb), is
mated with a heterozygous male. From basic Mendelian genetics for a diploid
organism such as mice, the expectation for the offspring from this mating
between two black heterozygous parents is one black homozygous BB to two
black heterozygous Bb to 1 brown homozygous bb. Interest now focuses on one
of her black daughters. The competing hypotheses are HBB that this black daugh-
ter is homozygous and HBb that she is heterozygous. From Mendelian genetics,
the prior probabilities are P(HBB) = 1/3 and P(HBb) = 2/3, so the prior ratio is
P(HBB) / P(HBb) = 1/2. Further suppose that this black daughter is mated with
a brown male (bb) and she has a litter with seven offspring, all black. The likeli-
hoods resulting from this experimental evidence are P(litter | HBB) = 1 whereas
P(litter | HBb) = 1 / 27 = 1/128, so the likelihood ratio or Bayes factor is P(litter
| HBB) / P(litter | HBb) = 128 in favor of HBB. Finally, multiplying the prior ratio
from the background information by the Bayes factor from the experimental
data gives the posterior ratio P(HBB | litter) / P(HBb | litter) = 128/2 = 64 that
favors HBB. The posterior probabilities are P(HBB | litter) = 64 / (1 + 64) =
64/65 and P(HBb | litter) = 1 / (1 + 64) = 1/65. This example of Bayesian
inference is exceptionally tidy because both the prior information from the
pedigree and the experimental evidence from the litter are objective and public.

Furthermore, given the reasonably strong evidence from this single litter,
any further evidence from additional litters would probably confirm the initial
verdict. Indeed, the probability that this initial conclusion HBB is actually false is
1/65, or only about 1.5%. But, if this experiment was repeated and that mouse
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Bayes’s theorem 141

produced several more litters, an exceedingly strong conclusion would result
because the weight of the evidence grows exponentially with its amount. For
instance, five additional and similar litters would give a posterior ratio (or a
Bayes factor) of more than 1012 in favor of HBB, which would render HBB prac-
tically certain. On the other hand, if the mouse in question were heterozygous,
then the investigation would be easier because a single brown offspring would
prove the hypothesis HBb with certainty without any calculations being needed.
This definitive conclusion that HBb is true would be expected to emerge rather
quickly because at least one brown mouse among N offspring is expected with
probability 1 − 2−N.

The advantage of posterior probabilities is that they address most directly
the foremost question of scientists and scholars about competing hypotheses,
namely, which hypothesis is probably true given the evidence. But the advantage
of the Bayes factor is that if the prior probabilities are highly controversial or
rather inscrutable, then any persons can compute their own posterior probabil-
ities from the reported Bayes factor and their own personal prior probabilities.
Also, in the special though fairly frequent case that the Bayes factor is huge –
especially 1010 or more – the Bayes factor delivers an exceedingly strong verdict
on its own without the additional labor of calculating and defending particular
values for the prior probabilities.

In typical applications, the evidence E is public and settled, whereas the
background information in the prior is personal and controversial (unlike the
tidy mouse example with clear information determining the prior probabili-
ties). For instance, the shared evidence E could be from a published clinical
trial concerning two medications X and Y, whereas the prior information of
individual physicians could be their own experiences of success or failure from
giving patients those medications, which might vary considerably from physi-
cian to physician. The public evidence E needs to be reasonably strong in order
to have greater influence than one’s personal prior information (which might
be contrary to the clinical trial) and thereby to convince most persons, or at
least to interest them.

From its start in 1763 to the present day, Bayes’s theorem has been
applied extensively in wonderfully diverse contexts across the sciences and the
humanities. In his introduction to Bayes’s paper, Richard Price touted Bayes’s
contribution as “a sure foundation for all our reasonings concerning past facts,
and what is likely to be hereafter,” and said that “it is also a problem that has
never before been solved” (Bayes 1763). Bayes’s own examples concerned the
positions of balls on a table and the proportions of blanks and prizes in a
lottery. But Price’s introduction also mentioned the potential application in
philosophical or theological arguments “from final causes for the existence of
the Deity,” for which this new inverse probability is “more directly applicable”
than the previous sorts of probability reasoning. Bayes’s paper was published
in the Philosophical Transactions of the Royal Society, the oldest scientific
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142 Probability

society in the world, and both the Rev. Bayes and the Rev. Price were fellows
of that prestigious society. The wide range of interests and applications that
they foresaw for probability in this new context of inductive reasoning were
characteristic of the philosopher-scientists of their times. Indeed, the second
Charter of 1663 of the Royal Society (which replaced the first Charter of 1662
with greater privileges by which the Society has since been, and continues to
be, governed) stated the purpose of “further promoting by the authority of
experiments the sciences of natural things and of useful arts, to the glory of
God the Creator, and the advantage of the human race.” McGrayne (2011)
has written a brilliant and entertaining account of how Bayes’s theorem
has contributed to many important developments, including cracking the
German’s Enigma code during World War II, discovering how genes are
controlled and regulated, and implementing spam filters for email. At present,
Bayes’s theorem is used extensively in science and technology, as well as in
philosophy and the social sciences. Countless consumer goods are what they
are today in part because of Bayes’s theorem helping scientists to optimize
their inferences and decisions during the research and development that has
improved those products. Likewise, Bayes’s theorem has added considerable
clarity to many important conversations in the humanities.

Probability distributions

A dozen probability distributions are used frequently and dozens more occa-
sionally. A few of the most important ones are mentioned here. A probability
distribution specifies the probability y over the range of the variable x. The
height of a probability curve is adjusted such that the area under the curve is 1,
in keeping with the second Kolmogorov axiom that P(�) = 1.

The uniform distribution is the simplest one. Over the range 0 ≤ x ≤ 1,
its probability is y = 1 inside this range, and y = 0 elsewhere. More generally,
over the range a ≤ x ≤ b, the probability is y = 1 / (b – a) inside this range, and
y = 0 elsewhere. For instance, over the range −1 ≤ x ≤ 1, the probability is y =
0.5 inside this range, and y = 0 elsewhere.

The normal or Gaussian distribution is the most prominent probability
distribution. It has the equation:

f (x) = 1√
2πσ2

e− (x−μ)2

2σ2 (8.4)

where μ is the mean, which locates the peak of this familiar bell-shaped curve,
and σ2 is the variance, which measures the width or spread of the distribution.
The square root of the variance, σ, is called the standard deviation. The standard
normal distribution has μ= 0 and σ2 = 1. For the standard normal distribution,
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Permutations and combinations 143

from plus to minus 1 standard deviation accounts for about 68.27% of the area
under the curve, 2 standard deviations for 95.45%, and 3 for 99.73%.

The central-limit theorem states that under mild conditions, the sum of a
large number of random variables is distributed approximately normally. For
instance, an easy method for generating random variables with a nearly stan-
dard normal distribution is to sum 12 random variables from the uniform
distribution with range 0 ≤ x ≤ 1 and then subtract 6. Observational errors
are often caused by the cumulative effects of a number of uncontrolled fac-
tors, giving these errors an approximately normal distribution. For N replicate
observations with errors having a standard deviation of σ, the standard error
of the mean of those N replicates equals σ / N 0.5. The normal distribution has
the advantage of being very tractable mathematically.

The log-normal distribution applies to a random variable whose logarithm
is normally distributed. Whereas the normal distribution arises from summing
a number of random variables, the log-normal distribution arises from
multiplying a number of random variables, all of which are positive. An
amazing number of things in the physical, biological, and social sciences
approximate a log-normal distribution. Examples include the diameter of ice
crystals in ice cream or oil drops in mayonnaise, the abundance of species
(bacteria, plants, or animals), latency periods for many human diseases, city
sizes, and household incomes.

The binomial distribution describes the number of successes in a sequence
of N independent trials, each of which yields success with probability p and
failure (1 – p). A simple example is tosses of a fair coin, with heads and tails
equally probable. As the number of coin tosses becomes large, the binomial
distribution approximates the normal distribution.

Another distribution is the Poisson distribution, which expresses the
probability of a number of events occurring within a fixed period of time if
these events occur with a known average rate and independently of the time
since the last event. For instance, it applies to decays of atoms in a sample of
a radioactive material.

Many common probability distributions, including the normal, binomial,
and Poisson distributions, belong to an important class, the exponential family.
Accordingly, mathematical results proven for the exponential family have a
wide range of applications. However, for this book on scientific method, this
brief section on probability distributions must suffice. Any further study of
probability distributions is better left to texts on probability and statistics.

Permutations and combinations

Many probability problems, especially in the context of games and gambling,
involve a number of possible outcomes that are equally probable. Such problems
can be solved by counting numbers of permutations or combinations.
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144 Probability

For R events or experiments such that the first event has N1 possible outcomes,
and for each of those the second event has N2 possible outcomes, and so on up
to the Rth with NR outcomes, there is a total of N1 × N2 × · · · × NR possible
outcomes. For example, how many different license plates could be made with
three digits followed by three letters? The solution is

10 × 10 × 10 × 26 × 26 × 26 = 17,576,000. (8.5)

A permutation is a distinct ordered arrangement of items. For example, for
the set of letters A and B and C, all possible permutations are ABC, ACB, BAC,
BCA, CAB, and CBA – which number 6, because the first choice has 3 options,
the second 2, and the third 1, for a total of 3 × 2 × 1 = 6 permutations. The
general rule is that for N entities, there are N × (N − 1) × (N – 2) × · · · ×
3 × 2 × 1 permutations. This number is called “N factorial” and is denoted by
N! For example, 1! = 1, 3! = 6, and 5! = 120. Also, by definition 0! = 1. As
a simple probability problem, presuming that these three letters are drawn at
random, what is the probability of a drawing starting with the letter A? It is 1/3
because there are two permutations satisfying this condition (ABC and ACB)
and there are six permutations all told.

Sometimes the entities are not all unique, as in the set A, A, B, and C, which has
two letters A that are alike. For N objects, of which N1 are alike, N2 are alike, and
so on up to NR alike, there are N!/ (N1!×N2!×· · ·×NR!) permutations. Hence,
this set of letters has 4! / (2! × 1! × 1!) = 24/2 = 12 permutations. Presuming
that these four letters are drawn at random, what is the probability of a drawing
starting with both As? It is 1/6 because there are 2 permutations satisfying this
condition (AABC and AACB) and there are 12 permutations all told.

A combination is a particular number for each of several different entities or
outcomes for which the order does not matter. For instance, consider selecting
three items from the five items A, B, C, D, and E. There are five ways to select the
first item, four for the second, and three for the third, so there are 5 × 4 × 3 =
60 permutations that distinguish different orderings. But every group of three
items, such as A and B and C, gets counted 3! = 6 times, as was explained earlier.
So the number of combinations, which do not distinguish different orderings, of
three items selected from five is 60/6 or 10 and all of them are equally probable.
The general rule is that N objects taken R at a time have N! / ((N − R)! ×
R!) possible combinations. Presuming that three letters are drawn from these
five at random, what is the probability of drawing a combination that includes
the letters A and B? It is 3/10 because there are 3 combinations satisfying this
condition (ABC, ABD, and ABE) and there are 10 combinations all told.

Probability fallacies

There is a substantial literature on probability fallacies in medicine, law, science,
and other fields. An especially common one is the base rate fallacy, also called
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the false positive paradox, which results from neglecting the base rate or prior
probabilities. But because that neglect automatically leads to confusion between
P(H |E) and P(E |H), an equally suitable name would be the reversed conditionals
fallacy. Stirzacker (1994:25) proposed an example that I have expressed concisely
as follows:

A simple medical problem involves three facts and one question. The facts are: (1) A rare
disease occurs by chance in 1 in every 100,000 persons. (2) If a person has the disease,
a fairly reliable blood test correctly diagnoses the disease with probability 0.95. (3) If a
person does not have the disease, the test gives a false diagnosis of disease with probability
0.005. If the blood test says that a person has the disease, what is the probability that this
is a correct diagnosis?

Most people, including many physicians, answer that the probability of dis-
ease is about 95%. However, from plugging the numbers into Bayes’s theorem,
surprisingly the correct answer is (0.95 × 0.00001) / [(0.95 × 0.00001) +
(0.005 × 0.99999)], or only about 0.2%. This is drastically different from 95%,
and it strongly supports the exact opposite conclusion! As Stirzaker (1994:26)
remarked, “Despite appearing to be a pretty good test, for a disease as rare as
this the test is almost useless.” For every real instance of the disease detected
by that test, there would be more than 500 false positives, so the results could
hardly be taken seriously. At best, such a test might offer economical screening
before administering another more expensive, definitive test.

What went wrong to give that incorrect answer? Let HW and HS be the
hypotheses that the person is actually well or sick, and let E be the evidence
of a blood test indicating disease. What is given is that P(HS) = 0.00001 and
hence P(HW) = 0.99999, that P(E | HS) = 0.95, and that P(E | HW) = 0.005;
and what is required is P(HS | E). The incorrect answer results from ignoring all
but one fact, that P(E | HS) = 0.95, and assuming erroneously that the reverse
conditional probability P(HS | E) has this same value. But ignoring the base rate
is a fallacy. Indeed, all three facts given in this problem are needed to obtain the
correct solution. That most people in general, and many doctors in particular,
make this common blunder in probability reasoning is alarming and potentially
dangerous.

Two additional probability fallacies are problematic in the context of law,
as emphasized in a seminal paper by Thompson and Schumann (1987): the
Prosecutor’s Fallacy and the Defense Attorney’s Fallacy. This context is tremen-
dously important because, increasingly, criminal cases have involved scientific
evidence and statistical arguments. They gave an example that I have expressed
concisely as follows:

A simple legal example of probability reasoning involves two facts and one question. The
facts are: (1) various other kinds of information give a prior probability of 0.1 that the
suspect is guilty of committing a murder; (2) a sample of the murderer’s blood found at
the scene of the crime matches the suspect’s rare blood type found in only one person
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146 Probability

in 100. The question is: How much weight should be given to this evidence from the
laboratory blood test?

Thompson and Schumann presented this probability problem to 73 college
undergraduates and asked them to evaluate the following two arguments. The
first is an example of the Prosecutor’s Fallacy and the second of the Defense
Attorney’s Fallacy. I have edited their texts slightly.

The prosecution argued that the blood test is highly relevant. The suspect has the same
blood type as the attacker. This blood type is found in only 1% of the population, so
there is only a 1% chance that the blood found at the scene came from someone other
than the suspect. Since there is only a 1% chance that someone else committed the crime,
there is a 99% chance that the suspect is guilty.

The defense argued that the evidence about blood types has very little relevance. Admit-
tedly only 1% of the population has the rare blood type. But the city where the crime
occurred has a population of 200,000 so this blood type would be found in about 2,000
persons. Therefore, the evidence merely shows that the suspect is one out of 2,000 per-
sons in the city who might have committed the crime. A one-in-2,000 chance or 0.05%
probability has little relevance for proving that this suspect is guilty.

What do you think of these two arguments? Of the 73 college students, about
29% thought the prosecution’s argument is correct and 69% thought the
defense’s argument is correct (including a few students who judged both argu-
ments correct). In fact, both of these arguments are fallacious.

Let HG and HI denote the hypotheses that the suspect is guilty or innocent and
E denote the evidence of the matching blood type. We are given that P(HG) =
0.1, so P(HI) = 0.9, and also that P(E | HI) = 0.01. The prosecution’s argument
assumes that P(HG | E) = 1 – P(E | HI). But this is a fallacy because these
reversed conditional probabilities are not properly related (in addition to the
problem that the prior information is ignored).

On the other hand, the defense’s argument adds a new fact, that the pop-
ulation of the city is 200,000. But that fact is irrelevant. This number does
not appear when this problem is framed properly by Bayes’s theorem. That
it is irrelevant can be seen easily by attempting to insert such a number into
the previous problem, which is analogous, about a blood test for a rare dis-
ease. Whether the patient lives in a large city of 10,000,000 persons or a
small town of 350 persons is obviously irrelevant as regards this patient’s
diagnosis.

What is the probability of guilt given the match, P(HG | E), according to
Bayes’s theorem? Again, we know P(HG), P(HI), and P(E | HI). However, we
are not supplied any value for P(E | HG), so not enough information has
been given to solve this problem. Nevertheless, for the sake of argument, if we
assume that P(E | HG) is quite close to 1, then by Bayes’s theorem the answer is
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(0.01 × 0.9) / [(0.01 × 0.9) + (1 × 0.1)] = 0.009/0.109, or about 8% probability
that the suspect is guilty, given the prior information and the blood test. Note
that this value is in between the 99% probability of the prosecution and the
0.05% probability of the defense. Also note that the probability of matching
blood types P(E | HI) is required by Bayes’s theorem in order to calculate the
reverse conditional probability P(HI | E), so the defense’s argument that the
former has little relevance is clearly fallacious.

Thompson and Schumann concluded on a somber note. “The use of math-
ematical evidence is likely to increase dramatically in the future . . . and legal
professionals will increasingly face difficult choices about how to deal with it.
Because their choices will turn, in part, on assumptions about the way people
respond to mathematical evidence, now is an opportune time for social scien-
tists to begin exploring this issue. Our hope is that social scientists . . . will be able
to answer the key underlying behavioral questions so that lawyers and judges
may base decisions about mathematical evidence on empirical data rather than
unguided intuitions.”

Whether an application of probability theory is in medicine or law or science
or whatever, such precisely are the choices: reliable inferences based on empirical
evidence, or else unreliable inferences based on unguided intuitions. Even a basic
education in probability theory, such as this brief chapter provides or at least
begins, can reduce probability fallacies.

Summary

Probability is the propensity for an event to occur or for a proposition to be true.
A convenient scaling for probabilities ranges from 0 to 1, with 0 representing
certain falsity, 1 representing certain truth, and intermediate values representing
uncertainty.

To do business with physical reality, probability theory must meet four basic
requirements. It must be general, suitable for all of its intended applications,
including deductive probability reasoning and inductive statistics reasoning. It
must be coherent. It must not make specific assertions about the physical world
in advance of observation and experimentation so that probability conclusions
can be dominated by empirical evidence, not by any inappropriate presupposi-
tions. And it must be practical, applicable to real experiences and experiments
within reach of human endowments and capacities.

Probability theory is built on predicate logic and arithmetic, requiring the
three Kolmogorov probability axioms (or an equivalent set of axioms). Proba-
bility axioms serve to enforce coherence among a set of probability assignments
and to make probabilities meaningful. The definition of conditional probability
is P(X | Y) = P(X ∩ Y) / P(Y), provided that P(Y) does not equal 0. In addition to
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148 Probability

axioms, probability theory also needs rules to assign probabilities, the principal
one being the straight rule of induction. And, for certain problems, counting
numbers of permutations and combinations of equally probable events can
provide probability assignments.

Bayes’s theorem is easily derived from the definition of conditional probabil-
ity. The salient feature of Bayes’s theorem is that it relates the reverse conditional
probabilities P(A | B) and P(B | A). A simple form of Bayes’s theorem is: P(A |
B) = [P(B | A) ( P(A)] / P(B). Two additional forms are given that are useful for
solving various problems. For hypotheses H1 and H2 and evidence E, the most
common report from a Bayesian hypothesis test is the posterior probabilities
P(H1 | E) and P(H2 | E). But an alternative report that is sometimes used is the
Bayes factor P(E | H1) / P(E | H2). Since its publication in 1763, Bayes’s theorem
has had countless applications across the sciences and the humanities.

Several common probability distributions are defined, including the uniform,
normal, and log-normal distributions. The normal distribution is particularly
important because the central-limit theorem states that under mild condi-
tions, the sum of a large number of random variables is distributed approxi-
mately normally. Observational errors often follow an approximately normal
distribution.

Probability fallacies are rampant in medicine, law, science, and other fields.
An especially common one is the base rate fallacy that results from neglecting
the base rate or prior probabilities, which then leads to confusion between the
reverse conditional probabilities P(H | E) and P(E | H), where H denotes some
hypothesis and E denotes some evidence. Additional probability fallacies that
occur in the context of law are called the Prosecutor’s Fallacy and the Defense
Attorney’s Fallacy. A basic understanding of probability theory helps one make
reliable inferences based on empirical evidence rather than unreliable inferences
based on unguided intuitions.

Study questions

(1) The Bakers have three children, of whom two are boys. What is the proba-
bility that their other child is a girl?

(2) What four requirements underlie a choice of probability axioms? List the
three Kolmogorov axioms. What roles do these axioms serve?

(3) State Bayes’s theorem in the ratio form. Give names to the three ratios,
as well as a basic explanation of what each term means. What are the
differences between the reverse conditional probabilities P(H | D) and
P(D | H) as regards both meaning and numerical value?

(4) What does the central-limit theorem state about the normal distribution?
Why do experimental errors often approximate the normal distribution?
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Study questions 149

(5) A rare disease affects 170 in every 100,000 persons. If a person has this
disease, a diagnostic test detects it with probability 0.85; whereas if a person
does not have this disease, a false positive occurs with probability 0.003. If
the test indicates that a person has this disease, what is the probability that
this is a correct diagnosis?
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9

Inductive logic and statistics

The logic that is so essential for scientific reasoning, being the “L” portion of the
PEL model, is of two basic kinds: deductive and inductive. Chapter 7 reviewed
deductive logic, and Chapter 8 probability, which is a branch of deductive logic.
This chapter reviews inductive logic, with “statistics” being essentially the term
meaning applied inductive logic.

A considerable complication is that statisticians have two competing
paradigms for induction: Bayesian and frequentist statistics. At stake are scien-
tific concerns, seeking efficient extraction of information from data to answer
important questions, and philosophical concerns, involving rational founda-
tions and coherent reasoning.

This chapter cannot possibly do what entire books on statistics do – present a
comprehensive treatment. But it can provide a prolegomenon to clarify the most
basic and pivotal issues, which are precisely the aspects of statistics that scientists
generally comprehend the least. The main objectives are to depict and contrast
the Bayesian and frequentist paradigms and to explain why inductive logic or
statistics often functions well despite imperfect data, imperfect models, and
imperfect scientists. Extremely important research in agriculture, medicine,
engineering, and other fields imposes great responsibilities on statistical
practice.

Historical perspective on induction

This section gives a brief history of induction from Aristotle to John Stuart Mill,
with more recent developments deferred to later sections. Aristotle (384–322 bc)
had a broad conception of induction. Primarily, induction is reasoning from
particular instances to general conclusions. That is ampliative reasoning from
observed to unobserved, from part to whole, from sample to population. Aris-
totle cautioned against hasty generalizations and noted that a single counter
example suffices to nullify a universal generalization. He carefully distinguished
induction from deduction, analogy, and isolated examples.

150
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Historical perspective on induction 151

One of Aristotle’s most influential contributions to the philosophy of science
was his model of scientific logic or reasoning, the inductive–deductive method.
Scientific inquiry alternates inductive and deductive steps. From observations,
induction provides general principles, and with those principles serving as
premises, deduction predicts or explains observed phenomena. Overall, there
is an advance from knowledge of facts to knowledge of an explanation for the
facts.

Epicurus (341–271 bc) discussed the fundamental role of induction in form-
ing concepts and learning language in his doctrine of “anticipation.” From
repeated sense perceptions, a general idea or image is formed that combines the
salient, common features of the objects, such as the concept of a horse derived
from numerous observations of horses. Once stored in memory, this concept
or anticipation acts as an organizing principle or convention for discriminating
which perceptions or objects are horses and for stating truths about horses.

Robert Grosseteste (c. 1168–1253) affirmed and refined Aristotle’s inductive–
deductive method, which he termed the Method of Resolution and Compo-
sition for its inductive and deductive components, respectively. But he added
to Aristotle’s methods of induction. His purposes were to verify true theories
and to falsify false theories. Causal laws were suspected when certain phenom-
ena were frequently correlated, but natural science sought robust knowledge
of real causes, not accidental correlations. “Grosseteste’s contribution was to
emphasize the importance of falsification in the search for true causes and to
develop the method of verification and falsification into a systematic method of
experimental procedure” (Crombie 1962:84). His approach used deduction to
falsify proposed but defective inductions. As mentioned in the earlier chapter
on deduction, Grosseteste’s Method of Verification deduced consequences of
a theory beyond its original application and then checked those predictions
experimentally. His Method of Falsification eliminated bad theories by deduc-
ing implications known to be false.

Grosseteste clearly understood that his optimistic view of induction required
two metaphysical presuppositions about the nature of physical reality: the uni-
formity of nature and the principle of parsimony or simplicity. Without those
presuppositions, there is no defensible method of induction in particular or
method of science in general.

In essence, at Oxford in 1230, Grosseteste’s new scientific method – with its
experiments, Method of Resolution and Composition, Method of Verification,
Method of Falsification, emphasis on logic and parsimony, and commonsense
presuppositions – was the paradigm for the design and analysis of scientific
experiments. Science’s goal was to provide humans with truth about the physical
world, and induction was a critical component of scientific method.

Roger Bacon (c. 1214–1294) promulgated three prerogatives of experimental
science, as mentioned in Chapter 3. Of those, the first two concerned induction.
His first prerogative was that inductive conclusions should be submitted to
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152 Inductive logic and statistics

further testing. That was much like his predecessor Grosseteste’s Method of
Verification. His second prerogative was that experiments could increase the
amount and variety of data used by inductive inferences, thus helping scientists
to discriminate between competing hypotheses.

John Duns Scotus (c. 1265–1308), at Paris, reflected Oxford’s confidence
about inductive logic. He admired Grosseteste’s commentaries on Aristotle’s
Posterior Analytics and Physics but disagreed on some points. Duns Scotus
admitted that, ordinarily, induction could not reach evident and certain knowl-
edge through complete enumeration, and yet he was quite optimistic that
“probable knowledge could be reached by induction from a sample and, more-
over, that the number of instances observed of particular events being correlated
increased the probability of the connexion between them being a truly universal
and causal one. . . . He realized that it was often impossible to get beyond mere
empirical generalizations, but he held that a well-established empirical general-
ization could be held with certainty because of the principle of the uniformity
of nature, which he regarded as a self-evident assumption of inductive science”
(Crombie 1962:168–169).

Building on an earlier proposal by Grosseteste, Duns Scotus offered an induc-
tive procedure called the Method of Agreement. “The procedure is to list the
various circumstances that are present each time the effect occurs, and to look
for some one circumstance that is present in every instance” (Losee 2001:29–
30). For example, if circumstances ABCD, ACE, ABEF, and ADF all gave rise
to the same effect x, then one could conclude that A could be the cause of
x, although Duns Scotus cautiously refrained from the stronger claim that A
must be the cause of x. The Method of Agreement could promote scientific
advances by generating plausible hypotheses that merited further research to
reach a more nearly definitive conclusion.

Henry of Ghent (c. 1217–1293), in contrast to Duns Scotus, believed that
real knowledge had to be about logically necessary things, not the contingent
things of which the physical world is composed. Had his view prevailed, science
in general and induction in particular would now be held in low philosophical
esteem.

William of Ockham (c. 1285–1347) further developed inductive logic along
lines begun earlier by Grosseteste and Duns Scotus. He added another induc-
tive procedure, the Method of Difference. “Ockham’s method is to compare two
instances – one instance in which the effect is present, and a second instance
in which the effect is not present” (Losee 2001:30–31). For example, if cir-
cumstances ABC gave effect x, but circumstances AB did not, then one could
conclude that C could be the cause of x. But Ockham was cautious in such
claims, especially because he realized the difficulty in proving that two cases
differed in only one respect. As a helpful, although partial, solution, he recom-
mended comparing a large number of cases to reduce the possibility that an
unrecognized factor could be responsible for the observed effect x.
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Historical perspective on induction 153

Nicholas of Autrecourt (c. 1300–1350) had the most skeptical view of induc-
tion among medieval thinkers, prefiguring the severe challenge that would
come several centuries later from David Hume. “He insisted that it cannot be
established that a correlation which has been observed to hold must continue
to hold in the future” (Losee 2001:37). Indeed, if the uniformity of nature is
questioned in earnest, then induction is in big trouble. Recall that Grosseteste
had recognized that induction depended on the uniformity of nature.

Sir Francis Bacon (1561–1626) so emphasized induction that his concep-
tion of scientific method is often known as Baconian induction. He criticized
Aristotelian induction on three counts: haphazard data collection without sys-
tematic experimentation; hasty generalizations, often later proved false; and
simplistic enumerations, with inadequate attention to negative instances.

Bacon discussed two inductive methods. The old and defective procedure was
the “anticipation of nature,” with “anticipation” reflecting its Epicurean usage,
which led to hasty and frivolous inductions. The new and correct procedure
was the “interpretation of nature.” Inductions or theories that were acceptable
interpretations “must encompass more particulars than those which they were
originally designed to explain and, secondly, some of these new particulars
should be verified,” that is, “theories must be larger and wider than the facts
from which they are drawn” (Urbach 1987:28). Good inductive theories would
have predictive success.

René Descartes (1596–1650) deemed Bacon’s view untenable, so he attempted
to invert Bacon’s scientific method: “But whereas Bacon sought to discover gen-
eral laws by progressive inductive ascent from less general relations, Descartes
sought to begin at the apex and work as far downwards as possible by a deduc-
tive procedure” (Losee 2001:64). Of course, that inverted strategy shifted the
burden to establishing science’s first principles, which had its own challenges.

Sir Isaac Newton (1642–1727) developed an influential view of scientific
method that was directed against Descartes’s attempt to derive physical laws
from metaphysical principles. Rather, Newton insisted on careful observa-
tion and induction, saying that “although the arguing from Experiments
and Observations by Induction be no Demonstration of general Conclu-
sions, yet it is the best way of arguing which the Nature of Things admits
of” (Losee 2001:73). Newton affirmed Aristotle’s inductive–deductive method,
which Newton termed the “Method of Analysis and Synthesis” for its deductive
and inductive components, respectively. “By insisting that scientific procedure
should include both an inductive stage and a deductive stage, Newton affirmed
a position that had been defended by Grosseteste and Roger Bacon in the thir-
teenth century, as well as by Galileo and Francis Bacon at the beginning of the
seventeenth century” (Losee 2001:73).

In Newton’s scientific method, induction was extremely prominent, being
no less than one of his four rules of scientific reasoning: “In experimental phi-
losophy we are to look upon propositions collected by general induction from
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154 Inductive logic and statistics

phænomena as accurately or very nearly true, notwithstanding any contrary
hypotheses that may be imagined, till such time as other phænomena occur, by
which they may either be made more accurate, or liable to exceptions” (Williams
and Steffens 1978:286).

John Stuart Mill (1806–1873) wrote a monumental System of Logic that
covered deductive and inductive logic, with a subtitle proclaiming a connected
view of the principles of evidence and the methods of scientific investigation.
Like Francis Bacon, Mill recommended a stepwise inductive ascent from detailed
observations to general theories. He had four (or five) inductive methods for
discovering scientific theories or laws that were essentially the same as those of
Grosseteste, Duns Scotus, and Ockham. Despite his enthusiasm for induction,
Mill recognized that his methods could not work well in cases of multiple causes
working together to produce a given effect. Mill wanted not merely to discover
scientific laws but also to justify and prove them, while carefully distinguishing
real causal connections from merely accidental sequences. But his justification
of induction has not satisfied subsequent philosophers of science.

More recent developments in inductive logic will be discussed later in this
chapter. During the twentieth century, induction picked up a common syn-
onym: statistics. Statistics is inductive logic. The historically recent advent of
statistical methods, digital computers, and enormous databases has stimulated
and facilitated astonishing advances in induction.

Bayesian inference

For a simple example of Bayesian inference about which hypothesis is true,
envision joining an introductory statistics class as they perform an experiment.
The professor shows the class an ordinary fair coin, an opaque urn, and some
marbles identical except for color, being either blue or white. Two volunteers,
students Juan and Beth, are appointed as experimentalists. Juan receives his
instructions and executes the following: He flips the coin without showing it
to anyone else. If the coin toss gives heads, he is to place in the urn one white
marble and three blue marbles. But if the coin toss gives tails, he is to place in the
urn three white marbles and one blue marble. Juan knows the urn’s contents,
but the remainder of the class, including Beth and the professor, know only that
exactly one of two hypotheses is true: either HB, that the urn contains one white
marble and three blue marbles, or else HW, that it contains three white marbles
and one blue marble.

The class is to determine which hypothesis, HB or HW, is probably true, by
means of the following experiment: Beth is to mix the marbles, draw one marble,
show its color to the class, and then replace it in the urn. That procedure is to
be repeated as necessary. The stopping rule is to stop when either hypothesis
reaches or exceeds a probability of 0.999. In other words, there is to be at most

Co
py
ri
gh
t 
@ 
20
12
. 
Ca
mb
ri
dg
e 
Un
iv
er
si
ty
 P
re
ss
.

Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e 
co
py
ri
gh
t 
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 9/27/2019 11:29 AM via JAMES MADISON UNIVERSITY
AN: 527886 ; Gauch, Hugh G..; Scientific Method in Brief
Account: s8863137.main.eds



Bayesian inference 155

Marble Experiment: Problem

Setup
       Flip a fair coin.
       If heads, place in an urn 1 white and 3 blue marbles.
       If tails, place in an urn 3 white and 1 blue marbles.

Hypotheses
       HB : 1 white and 3 blue marbles (WBBB).
       HW : 3 white and 1 blue marbles (WWWB).

Purpose
       To determine which hypothesis, HB or HW, is probably true.

Experiment
       Mix the marbles, draw a marble, observe its color, and replace it,
       repeating this procedure as necessary.

Stopping Rule
       Stop when a hypothesis reaches a posterior probability of 0.999.

Figure 9.1 A marble experiment’s setup, hypotheses, and purpose.

only 1 chance in 1,000 that the conclusion will be false. This marble problem is
summarized in Figure 9.1.

The ratio form of Bayes’s rule is convenient. Here it is recalled, with the
earlier generic hypothesis labels “1” and “2” replaced by more informative
labels, namely, “B” meaning mostly blue marbles (one white and three blue)
and “W” meaning mostly white marbles (three white and one blue).

P(HB |E )

P(HW|E )
= P(E |HB )

P(E |HW)
× P(HB )

P(HW)
(9.1)

Table 9.1 gives the data from an actual experiment with blue and white
marbles and analyzes the data using this equation. From the coin toss, the prior
odds for HB:HW are 1:1, so the prior probability P(HB) = 0.5, and this is also
the posterior probability P(HB | E) = 0.5 before the experiment has generated
any evidence.

The likelihood odds P(E | HB):P(E | HW) arising from each possible empirical
outcome of drawing a blue or a white marble are as follows. Recalling that HB

has three of four marbles blue, but HW has only one of four marbles blue, a blue
draw is three times as probable given HB as it is given HW. Because P(blue | HB) =
3/4 = 0.75 and P(blue | HW) = 1/4 = 0.25, a blue draw contributes likelihood
odds of 0.75:0.25 or 3:1 for HB:HW, favoring HB. By similar reasoning, a white

Co
py
ri
gh
t 
@ 
20
12
. 
Ca
mb
ri
dg
e 
Un
iv
er
si
ty
 P
re
ss
.

Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e 
co
py
ri
gh
t 
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 9/27/2019 11:29 AM via JAMES MADISON UNIVERSITY
AN: 527886 ; Gauch, Hugh G..; Scientific Method in Brief
Account: s8863137.main.eds



156 Inductive logic and statistics

Table 9.1 Bayesian analysis for an actual marble
experiment, assuming prior odds for HB:HW of 1:1.
The experiment concludes upon reaching a
posterior probability of 0.999.

Posterior Posterior
Draw Outcome HB:HW P(HB | E)

(Prior) 1:1 0.500000
1 White 1:3 0.250000
2 Blue 1:1 0.500000
3 White 1:3 0.250000
4 Blue 1:1 0.500000
5 Blue 3:1 0.750000
6 Blue 9:1 0.900000
7 Blue 27:1 0.964286
8 Blue 81:1 0.987805
9 Blue 243:1 0.995902

10 White 81:1 0.987805
11 Blue 243:1 0.995902
12 White 81:1 0.987805
13 Blue 243:1 0.995902
14 Blue 729:1 0.998630
15 Blue 2187:1 0.999543

draw contributes likelihood odds of 1:3 against HB. Furthermore, because each
draw is an independent event after remixing the marbles, individual trials
combine multiplicatively in an overall experiment. For example, two blue draws
will generate likelihood odds in favor of HB of 3:1 times 3:1, which equals 9:1.
Thus, in a sequential experiment, each blue draw will increase the posterior
odds for HB:HW by 3:1, whereas each white draw will decrease it by 1:3.

Applying this analysis to the data in Table 9.1, note that the first draw is a
white marble, contributing likelihood odds of 1:3 against HB. Multiplying those
likelihood odds of 1:3 by the previous odds (the prior) of 1:1 gives posterior
odds of 1:3, decreasing the posterior probability to P(HB | E) = 0.25, where
the evidence at this point reflects one draw. In this sequential experiment, the
posterior results after the first draw become the prior results at the start of the
second draw. The second draw happens to be blue, contributing likelihood odds
of 3:1 favoring HB, thereby bringing the posterior probability P(HB | E) back to
the initial value of 0.5.

Moving on to the sixth draw, the previous odds are 3:1, and the current
blue draw contributes likelihood odds of 3:1, resulting in posterior odds of
9:1 favoring HB and hence a posterior probability of P(HB | E) = 0.9. Finally,
after 15 draws, the posterior probability happens to exceed the stopping rule’s

Co
py
ri
gh
t 
@ 
20
12
. 
Ca
mb
ri
dg
e 
Un
iv
er
si
ty
 P
re
ss
.

Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e 
co
py
ri
gh
t 
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 9/27/2019 11:29 AM via JAMES MADISON UNIVERSITY
AN: 527886 ; Gauch, Hugh G..; Scientific Method in Brief
Account: s8863137.main.eds



Bayesian inference 157

preselected value of 0.999, so the experiment stops, and hypothesis HB is
accepted with more than 99.9% probability of truth. Incidentally, in this partic-
ular instance of an actual marble experiment, the conclusion was indeed correct
because the urn actually did contain three blue marbles and one white marble,
as could have been demonstrated easily by some different experiment, such as
drawing out all four marbles at once.

Table 9.1 illustrates an important feature of data analysis: results become
more conclusive as an experiment becomes larger. During the first six draws,
HB has two wins, two losses, and two ties, so the results are quite inconclusive,
and the better-supported hypothesis never reaches a probability beyond 0.9.
Indeed, at only one draw and again at three draws, this experiment gives mild
support to the false hypothesis! But draws 5 to 15 all give the win to HB, which
is actually true, finally with a probability greater than 0.999.

This particular experiment reached its verdict after 15 draws, but how long
would such experiments be on average? A simple approximation, regardless
whether HB or HW is true, is that on average each four draws give three draws
that support the true hypothesis and one draw that supports the false hypothesis.
Hence, on average, for four draws, two draws cancel out and two support the
true hypothesis. Let M denote the margin of blue draws over white draws. Then,
the posterior odds HB:HW equal 3M:1, which exceed 999:1 or 99.9% confidence
favoring HB when M = 7, or exceed 1:999 favoring HW when M = −7. Because
half the data cancel and half count, the length L required for a margin of ±7
averages about 2 × 7 = 14 draws. Hence, the particular experiment in Table
9.1, having 15 draws, is about average.

For M equal to 2, 3, 4, or 5, a more exact calculation gives the average length
L as 3.2, 5.6, 7.8, or 9.9 draws, but thereafter the approximation that L ≈ 2M is
quite accurate. For instance, if only 1 chance of error in 1,000,000 were to be
tolerated, that would require a margin of 13 because 313 = 1,594,323 and hence
an average length of about 26 draws. Because the weight of this experimental
evidence grows exponentially with its amount, an exceedingly high probability
of truth is readily attainable.

Furthermore, this exponential increase in the weight of the evidence confers
robustness to this Bayesian analysis were this experiment to encounter various
problems and complications that can plague real-world experiments. Problems
can be disastrous but not necessarily so because weighty evidence can sur-
mount considerable difficulties. Four substantial but surmountable problems
are described here: controversial background information, messy data, wrong
hypotheses, and different statistical methods.

Controversial Background Information. The foremost objection to
Bayesian inference has been that frequently the background information that
determines the prior probabilities is inadequate or even controversial. This
perceived deficiency prompted the development of an alternative statistical
paradigm, frequentist statistics, which will be described in the next section.
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158 Inductive logic and statistics

Recalling the mouse experiment in the previous chapter, which is analogous
to the marble experiment in this chapter, Fisher judged that “the method of
Bayes could properly be applied” because the pedigree information for these
mice supplied “cogent knowledge” of the prior probabilities (Fisher 1973:8).
On the other hand, “if knowledge of the origin of the mouse tested were lacking,
no experimenter would feel he had warrant for arguing as if he knew that of
which in fact he was ignorant, and for lack of adequate data” to determine the
prior probabilities “Bayes’ method of reasoning would be inapplicable” (Fisher
1973:20). Fisher’s tale of the black and brown mice was a moral tale that waxed
sermonic in its conclusion that “It is evidently easier for the practitioner of
natural science to recognize the difference between knowing and not knowing
than this seems to be for the more abstract mathematician,” that is, for the
Bayesian statistician (Fisher 1973:20).

For the present marble experiment, the prior probabilities P(HB) and P(HW)
are known precisely because of the setup information about a coin toss. But
what happens if no background information is given, so the prior probabilities
are unknown and potentially controversial?

A particularly unfavorable case results from assigning a small prior proba-
bility to what is actually the true hypothesis, such as P(HB) = 0.1 when HB is
true. Prior odds for HB:HW of 1:9 require an additional likelihood odds of 9:1 to
move the odds back to the 1:1 starting point of the original setup, which entails
an average of about four draws. Hence, this unfavorable prior increases the
original average length of the experiment from 14 to 14 + 4 = 18 draws. Like-
wise, were the prior odds extremely challenging, such as P(HB) = 0.001 when
HB is true, the experimental effort increases to about 28 draws. Consequently,
prior probabilities that are unfavorable to the truth result in more work, but
the truth is still attainable.

A Bayesian statistician has essentially two alternatives for dealing with inad-
equate prior information. One alternative is to supply a noninformative prior,
namely, P(HB) = P(HW) = 0.5, and also show what range of prior probabilities
still leaves the conclusion unaltered, given the data at hand. If the data are
strong, the conclusion may be robust despite a vague prior. The other alterna-
tive is to report the Bayes factor P(E | HB) / P(E | HW) instead of the posterior
probabilities because this avoids prior probabilities altogether. Either way, in
the favorable case that the weight of the evidence grows exponentially with
its amount, exceptionally strong evidence can be attainable that provides for a
reliable and convincing conclusion.

Messy Data. In the original experimental procedure, the student, Beth, faith-
fully showed the class the marble resulting from each draw, ensuring quality
data. But what happens if instead a weary and fickle Beth works alone and
observes the drawn marble’s color accurately only half of the time, whereas she
reports blue or white at random the other half of the time? Can these messy
data still decide between HB and HW with confidence?
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Bayesian inference 159

The original margin between blue and white draws of seven draws allows
the probability of a false conclusion to climb to 0.027 with the messy data. To
maintain the specified 0.001 probability of error or 0.999 probability of truth,
now the required margin increases to 14 and the average length of the experi-
ment increases to about 56 draws. Hence, in this case, increased data quantity
can compensate for decreased data quality. Of course, more pathological cases
would be disastrous, such as unrecognized problems causing serious bias in
the data. Frequently, scientific experiments are rather messy but not downright
pathological, so the remedy of more data works.

Wrong Hypotheses. Certainly, one of the deepest problems that a scientific
inquiry can possibly encounter is that the truth is not even among the hypotheses
under consideration. For instance, consider this marble experiment with its
setup specifying the hypotheses HB with one white and three blue marbles, or
else HW with three white and one blue marbles. But what happens if by mistake
or by mischief the experimentalist, Juan, puts two white and two blue marbles
in the urn? Now the true hypothesis, HE denoting equal numbers of both colors,
is not even under consideration.

When HE is true but only HB and HW are considered, on average, the exper-
iment will require 49 draws until a margin of 7 draws declares HB or else HW

true. But such a long experiment is suspicious, given that a length around 14
draws is expected. The length of the experiment has a wide variability around
its average of 49 draws, with 70 or more draws occurring 22% of the time, which
is extremely suspicious. But, on the other hand, only 20 or fewer draws occur
23% of the time, which would not be alarming. However, if the experiment
were repeated several times, most likely the results would be weird: some unbe-
lievably long experiments, contradictory conclusions favoring HB about half of
the time and HW the other half, and frequencies for both blue and white draws
near 0.5 for the pooled data. An unsuspected problem may escape detection
after just one run but probably not after three or four runs, and almost certainly
not after 10 or 20 runs.

The data are likely, at least eventually, to embarrass a faulty paradigm and
thereby precipitate a paradigm shift. Even rather severe mistakes can be reme-
diable. Scientific discovery is like a hike in the woods: you can go the wrong way
for a while and yet still arrive at your destination at the end of the day.

Different Statistical Methods. Sometimes various scientists working on a
given project adopt or prefer different statistical methods for various reasons,
including debates between advocates of the Bayesian and frequentist approaches
to statistics. How do statistical debates affect science? Can scientists get the same
answers even if they apply different statistical methods to the data?

The short answer is that small experiments generating few data can leave
scientists from different statistical schools with different conclusions about
which hypothesis is most likely to be true. Rather frequently, scientists have only
rather limited data, so the choice of a first-rate, efficient statistical procedure is
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160 Inductive logic and statistics

important. However, as more data become available, the influence of differences
in statistical methods diminishes. Eventually, everyone will come to the same
conclusion, even though they differ in terms of the particular calculations used
and the exact confidence attributed to the unanimous conclusion.

Many additional challenges could be encountered beyond these four prob-
lems. For instance, closer hypotheses would be harder to discriminate between
than HB and HW having widely separated probabilities of 0.75 and 0.25 for
drawing a blue marble. The new hypotheses H1 with three white and five blue
marbles and H2 with five white and three blue marbles give closer probabilities
of 0.625 and 0.375. Now the average length of the experiments is about 56 draws
to maintain the 0.999 probability of a true conclusion. Hence, data quantity can
compensate for yet another potential challenge.

In conclusion, numerous problems can be overcome by the simple expedient
of collecting more data, assuming that this option is not too expensive or
difficult. This favorable outcome is especially likely when the weight of the
evidence increases exponentially with the amount of the evidence.

Frequentist inference

Historically, the Bayesian paradigm preceded the frequentist paradigm by about
a century and a half, so the latter was formulated in reaction to perceived
problems with its predecessor. Principally, the frequentist paradigm sought
to eliminate the Bayesian prior because it burdened scientists with the search
for additional information that often was unavailable, diffuse, inaccurate, or
controversial. Frequentists such as Sir Ronald A. Fisher, Jerzy Neyman, and
Egon S. Pearson wanted to give scientists a paradigm with greater objectivity.

Frequentist statistics designates one hypothesis among those under consid-
eration as the null hypothesis. Ordinarily, the null hypothesis is that there is no
effect of the various treatments, whereas one or more alternative hypotheses
express various possible treatment effects. A null hypothesis is either true or
false, and a statistical test either accepts or rejects the null hypothesis, so there
are four possibilities. A Type I error event is to reject a true null hypothesis,
whereas a Type II error event is to accept a false null hypothesis.

The basic idea of frequentist hypothesis testing is that a statistical procedure
with few Types I and II errors provides reliable learning from experiments.
Type I errors can be avoided altogether merely by accepting every null hypothesis
regardless of what the data show, and Type II errors can be avoided by rejecting
every null. Hence, there is an inherent trade-off between Types I and II errors,
so some compromise must be struck.

The ideal way to establish this compromise is to evaluate the cost or penalty
for Type I errors and the cost for Type II errors and then balance those errors
so as to minimize the overall expected cost of errors of both kinds. In routine
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Figure 9.2 Hypothetical example of error events and rates. A null hypothesis is either true

or false, and a test, involving experimental data and a statistical inference, is used to

accept or reject the null hypothesis, so there are four possible outcomes, with counts as

shown. Also shown are row totals, column totals, and the grand total of 100 tests. To

reject a true null hypothesis is a false-positive error event, whereas to accept a false null

hypothesis is a false-negative error event.

practice, however, scientists tend to set the Type I error rate at some convenient
level and not to be aware of the accompanying Type II error rate, let alone the
implied overall or average cost of errors.

Figure 9.2 provides a concrete example. Such numbers could represent the
results when a diagnostic test accepts or rejects a null hypothesis of no disease
and, subsequently, a definitive test determines for sure whether the null is true
or false.

Understand that an error event and an error rate are two different things.
To reject a true null hypothesis is a Type I error event, and there are four such
events. To accept a false null hypothesis is a Type II error event, and there are
two such events. The Type I error rate α is P(reject | true) = 4/95 ≈ 0.0421 and
the Type II error rate β is P(accept | false) = 2/5 = 0.4. Note that the Type I
error rate is 4/95, not 4/7 and not 4/100.

Another important quantity for frequentists is the p-value, defined as the
probability of getting an outcome at least as extreme as the actual observed
outcome under the assumption that the null hypothesis is true. To calculate the
p-value, one envisions repeating the experiment an infinite number of times and
finds the probability of getting an outcome as extreme as or more extreme than
the actual experimental outcome under the assumption that the null hypothesis
is true. The smaller the p-value, the more strongly a frequentist test rejects the
null hypothesis. It has become the convention in the scientific community to
call rejection at a p-value of 0.05 a “significant” result and rejection at the 0.01
level a “highly significant” result.

To illustrate the calculation of a p-value, Table 9.2 analyzes the marble exper-
iment from a frequentist perspective that was previously analyzed in Table 9.1
from a Bayesian perspective. Let the null hypothesis be HW, that the urn contains
three white marbles and one blue marble, and let the alternative hypothesis be
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162 Inductive logic and statistics

Table 9.2 Frequentist analysis for an actual marble
experiment, assuming that the null hypothesis HW is true and
the experiment stops at 15 draws. At an experimental
outcome of 11 blue draws (and 4 white draws), which is
marked by an asterisk and is the same outcome as in
Table 9.1, the conclusion is to reject HW at the highly
significant p-value of 0.000115.

Blue Draws Probability p-value

0 0.01336346101016 1.00000000000000
1 0.06681730505079 0.98663653898984
2 0.15590704511851 0.91981923393905
3 0.22519906517118 0.76391218882054
4 0.22519906517118 0.53871312364936
5 0.16514598112553 0.31351405847818
6 0.09174776729196 0.14836807735264
7 0.03932047169656 0.05662031006068
8 0.01310682389885 0.01729983836412
9 0.00339806545526 0.00419301446527

10 0.00067961309105 0.00079494901001
11 0.00010297168046 0.00011533591896 *
12 0.00001144129783 0.00001236423850
13 0.00000088009983 0.00000092294067
14 0.00000004190952 0.00000004284084
15 0.00000000093132 0.00000000093132

HB, that it contains one white and three blue marbles. (In this case, neither
hypothesis corresponds to the idea of no treatment effect, so HW has been cho-
sen arbitrarily to be the null hypothesis, but the story would be the same had
HB been designated the null hypothesis instead.)

Table 9.2 has three columns of numbers. The first column lists, for an exper-
iment with 15 draws, the 16 possible outcomes, namely, 0 to 15 blue draws
(and, correspondingly, 15 to 0 white draws). This analysis takes HW as the null
hypothesis, and under this assumption that the urn contains three white mar-
bles and one blue marble, the probability of a blue draw is 0.25. So experiments
with 15 draws will average 15 × 0.25 = 3.75 blue draws. Accordingly, were
this experiment repeated many times, outcomes of about 3 or 4 blue draws
would be expected to be rather frequent, whereas 14 or 15 blue draws would
be quite rare. To upgrade this obvious intuition with an exact calculation using
the probability theory explained in the preceding chapter, an outcome of b
blue draws and w white draws from a total of n = b + w draws can occur
with n! / (b! × w!) permutations, and the probability of each such outcome is
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Frequentist inference 163

0.25b × 0.75w. For example, the probability of 5 blue and 10 white draws is
[15! / (5! × 10!)] × 0.255 × 0.7510 ≈ 0.165146.

These probabilities, for all possible outcomes from b values of 0 to 15, are
listed in the second column of Table 9.2. Finally, the third column is the p-value,
obtained for b blue draws by summing the probabilities for all outcomes with
b or more blue draws. For example, the p-value for 0 blue draws is 1, because it
is the sum of all 16 of these probabilities, whereas the p-value for 14 blue draws
is the sum of the last two probabilities. For the particular marble experiment
considered here, the actual outcome was 11 blue draws, and an asterisk draws
attention to the corresponding p-value of 0.000115. The conclusion, based on
this extremely small p-value, is to reject HW as a highly significant result.

Unlike Bayesian analysis, which requires specification of prior probabilities
in order to do the calculations, the frequentist analysis requires no such input,
and thereby it seems admirably objective. So even if we know nothing about the
process whereby the urn receives either the one white and three blue marbles
or the reverse, we can still carry on unhindered with this wonderfully objective
analysis! Or, so it seems.

Most persons who have read this section thus far probably have not sensed
anything ambiguous or misleading in this frequentist analysis. It all seems so
sensible. Besides, this statistical paradigm has dominated in scientific research
for the previous several decades, so it hardly seems suspect. Nevertheless, there
are some serious difficulties.

One problem is that, frequently, the error rate of primary concern to scientists
is something other than the Type I or Type II error rates. The False Discovery
Rate (FDR) is defined as the probability of the null hypothesis being true given
that it is rejected, P(true | reject), which equals 4/7 ≈ 0.5714 for the example in
Figure 9.2. It has the meaning here of the probability that a diagnosis of disease
is actually false. Unfortunately, scientists often use the familiar Type I error
rate P(reject | true) when their applications actually concern the FDR, which is
the reverse conditional probability P(true | reject), which always has a different
meaning and usually has a different value.

A worrisome feature of p-values is the strange influence accorded to the rule
specifying when an experiment stops, which must be specified because every
experiment must stop. The implicit stopping rule needed to make Table 9.2 com-
parable with Table 9.1 is that the experiment stops at 15 draws. But other stop-
ping rules could result in exactly these same data, such as stop at 11 blue draws
or stop at 4 white draws. However, these three rules differ in the imaginary out-
comes that would result as the frequentist envisions numerous repetitions of the
experiment. Consequently, exactly the same data can generate different p-values
by assuming different stopping rules. For instance, Berger and Berry (1988) cited
a disturbing example in which frequentist analyses of a single experiment gave
p-values of 0.021, 0.049, 0.085, and any other value up to 1 just by assuming
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164 Inductive logic and statistics

different stopping rules. So a p-value depends on the experimental data and
the stopping rule. Consequently, it depends on the actual experiment that did
occur and an infinite number of other imaginary experiments that did not occur.
Different stopping rules are generating different stories about just what those
other imaginary experiments are, thereby changing p-values. But such reason-
ing seems bizarre and problematic, opening the door to unlimited subjectivity,
quite in contradiction to the frequentists’ grand quest for objectivity.

Another problem with p-values is that they usually overestimate, but can also
underestimate, the strength of the evidence because they are strongly affected by
the sample size. Raftery (1995) explained that Fisher’s choice of Type I error rates
α of 0.05 and 0.01 for significant and highly significant results were developed
in the context of agricultural experiments with typical sample sizes in the range
of 30 to 200, but these choices are misleading for sample sizes well outside
this range. Contemporary experiments in the physical, biological, and social
sciences often have sample sizes exceeding 10,000, for which the conventional
α = 0.05 will declare nearly all tests significant. For instance, from Raftery’s
Table 9, α = 0.053 for a “significant” result with 50 samples corresponds to α =
0.0007 with 100,000 samples, which is drastically different by a factor of almost
100. Unfortunately, many scientists are unaware of the adjustments in α that
need to be made for sample size. Because of these problems with p-values, their
use is declining, particularly in medical journals.

Bayesian methods have a tremendous advantage of computational ease over
frequentist methods for models fitting thousands of parameters, which are
becoming increasingly common in contemporary science. Also, some theorems
(called complete class theorems) prove that even if one’s objective is to optimize
frequentist criteria, Bayesian procedures are often ideal for that (Robert 2007).

For introductory exposition of frequentist statistics, see Cox and Hinkley
(1980); for Bayesian statistics, see Gelman et al. (2004) or Hoff (2009). For
more technical presentations of Bayesian statistics, see the seminal text by
Berger (1985) and the more recent text by Robert (2007).

Bayesian decision

The distinction between inference and decision is that inference problems pur-
sue true beliefs, whereas decision problems pursue good actions. Clearly, infer-
ence and decision problems are interconnected because beliefs inform decisions
and influence actions. Accordingly, decision problems incorporate inference
sub-problems.

Many decisions are too simple or unimportant to warrant formal analysis,
but some decisions are difficult and important. Formal decision analysis pro-
vides a logical framework that makes an individual’s reasoning explicit, divides
a complex problem into manageable components, eliminates inconsistencies in
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Bayesian decision 165

a person’s reasoning, clarifies the options, facilitates clear communication with
others also involved in a decision, and promotes orderly and creative problem-
solving. Sometimes life requires easy and quick decisions but at other times it
demands difficult and careful decisions. Accordingly, formal decision methods
are supplements to, not replacements for, informal methods. On the one hand,
even modest study of formal decision theory can illuminate and refine ordi-
nary informal decisions. On the other hand, simple common-sense decision
procedures provide the only possible ultimate source and rational defense for a
formal theory’s foundations and axioms.

The basic structure of a decision problem is as follows. Decision theory
partitions the components or causes of a situation into two fundamentally
different groups on the basis of whether or not we have the power to control a
given component or cause. What we can control is termed the “action” or choice.
Obviously, to have a choice, there must exist at least two possible actions at our
disposal. What we cannot control is termed the “state” or, to use a longer phrase,
the state of nature. Each state-and-action combination is termed an “outcome,”
and each outcome is assigned a “utility” or “consequence” that assesses the
value or benefit or goodness of that outcome, allowing negative values for loss
or badness, and assigning zero for indifference. These possible consequences
can be written in a consequences matrix, a two-way table with columns labeled
with states and rows labeled with actions. There is also information on the
probabilities of the states occurring, resulting from an inference sub-problem
with its prior probabilities and likelihood information. If the state of nature
were known or could be predicted with certainty, determining the best decision
would be considerably easier; having only probabilistic information about the
present or future state causes some complexity, uncertainty, and risk. Finally,
the information on consequences and probabilities of states is combined in
a decision criterion that assigns values to each choice and indicates the best
action.

Figure 9.3 presents a simple example of a farmer’s cropping decision. There
are three possible states of nature, which are outside the farmer’s control: good,
fair, or bad weather. There are three possible actions among which the farmer
can choose: plant crop A, plant crop B, or lease the land.

Beginning at the lower left portion of Figure 9.3, we know something about
the probabilities of the weather states. We possess old and new data on the
weather, summarized in the priors and likelihoods. For example, the old data
could be long-run frequencies based on extensive historical climate records,
indicating prior probabilities of 0.30, 0.50, and 0.20 for good, fair, and bad
weather. The new data could be a recent long-range weather forecast that
happens to favor good weather, giving likelihoods of 0.60, 0.30, and 0.10 for
good, fair, and bad weather. Bayesian inference then combines the priors and
likelihoods to derive the posterior probabilities of the weather states, as shown
near the middle of the figure. Multiplying each prior by its corresponding
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166 Inductive logic and statistics

The Structure of a Decision Problem

Consequences
Decision Criterion:
Maximize Expected
Utility

Expect

54.1

58.0

30.0

< Best

Decision

Probabilities of States

(Utilities)

States

Actions

Crop A

Crop B

Lease

Posterior 0.51 0.43 0.06

Old and New Data on States

Prior 0.30 0.50 0.20

Likelihood 0.60 0.30 0.10

100

80

30

–20

0

30

10

40

30

Good Fair Bad

Figure 9.3 A decision problem about which crop to plant, which concludes that crop B is

the best choice.

likelihood gives values of 0.18, 0.15, and 0.02, for a total of 0.35, and division
of those three values by their total yields the posterior probabilities, namely,
approximately 0.51, 0.43, and 0.06 for good, fair, and bad weather. So far, this
is a standard inference problem. But a decision problem is more complicated,
with two additional components, as explained next.

The upper left portion of Figure 9.3 shows the matrix of consequences or
utilities. The outcome for any given growing season is specified by its particular
state-and-action combination. The three possible states are good, fair, and bad
weather, and the three possible actions are to plant crop A, plant crop B, or lease
the land, for a total of 3 × 3 = 9 possible outcomes. The consequences matrix
shows the utility or value of each possible outcome, using a positive number
for a utility or gain, a negative number for a loss, or a zero for indifference. For
example, in a given year, the outcome might be fair weather for crop B, which
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Bayesian decision 167

has a utility of 40, where this number represents profit in dollars per acre or
whatever.

Finally, the upper right portion of Figure 9.3 specifies a decision criterion,
which is to maximize the expected utility. The expected utility is the average or
predicted utility, calculated for each possible action by multiplying the utility
for each state by its corresponding probability and summing over the states.
For example, the expected utility for crop A is (100 × 0.51) + (10 × 0.43) +
(−20 × 0.06) ≈ 54.1. Likewise, the expected utility for crop B is 58.0 and that for
leasing is 30.0. The largest of these three values is 58.0, indicating that planting
crop B is the best decision to maximize the expected utility.

This example illustrates a frequent feature of decision problems: different
penalties for different errors can cause the best decision to differ from the best
inference. Bayesian inference gives the greatest posterior probability of 0.51
to good weather, and good weather favors the choice of crop A. But Bayesian
decision instead chooses crop B, with its largest expected utility of 58.0, primarily
because fair weather is rather likely and would involve a tremendous reduction
in crop A’s utility.

Both probability and statistics require only the three Kolmogorov probability
axioms (and the inherited predicate logic and arithmetic axioms), but decision
theory requires the addition of one more axiom, such as the axiom of desirability
of Jeffrey (1983:80–81). In essence, it says that the utility or desirability of an
action equals the average of the utilities for its various outcomes weighted by
their probabilities, as was done in Figure 9.3.

Because of different attitudes toward risk, decision criteria other than max-
imized expected utility may be appropriate and preferable. For example, one
might prefer to minimize the worst possible utility, which in this case would
favor leasing the land (because the worst possible utility from leasing would
be 30, whereas crop A could be as bad as –20, and crop B as bad as 0). Some-
times the response to the expected utility is nonlinear, such as a strong response
to utilities below some minimum needed for survival, but a mild response
to differences among utilities that merely distinguish various levels of luxury.
Furthermore, decisions can be evaluated in terms of not only their average but
also their variability around that average, with large variability implying much
uncertainty and risk. Sometimes a relatively minor compromise in the average
can gain a substantial reduction in the variability, which is the basis for the
insurance industry.

Decisions may have several criteria to be optimized simultaneously, probably
with some complicated trade-offs and compromises. For example, a farmer
might want to optimize income, as in Figure 9.3, but also want to rotate crops
to avoid an epidemic buildup of pest populations and want to diversify crops to
stagger the workload during busy seasons. Those other constraints might result
in a decision, say, to plant 60% crop B and 40% crop A, which would reduce
the expected utility slightly to (0.6 × 58.0) + (0.4 × 54.1) ≈ 56.4.
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168 Inductive logic and statistics

Although decision problems are more complex than inference problems, in
practice, they often are easier than inference problems because the necessity to
take some action can allow even small probability differences to force sensible
decisions. For example, other things being equal, even a slightly higher proba-
bility that a particular medicine is effective or a particular airplane is safe will
suffice to generate strong preferences. So odds of merely 60:40 can force practi-
cal decisions. Because most probability reasoning is motivated by the practical
need to make good decisions, not merely by theoretical interests, even rather
weak data and small probability differences can still significantly inform and
influence decisions.

Induction lost and regained

This chapter’s account of inductive logic has been, on the whole, rather confi-
dent and cheerful. However, a tremendous philosophical battle has raged over
induction from ancient Greek skeptics to the present, with David Hume’s cri-
tique being especially well known. Without doubt, inductive logic has suffered
more numerous and drastic criticisms than all of the other components of
scientific reasoning combined. Dozens of books, mostly by philosophers, have
been written on the so-called problem of induction.

Unfortunately, the verdict of history seems to be that “the salient fea-
ture of attempts to solve Hume’s problem is that they have all failed”
(Friedman 1990:28). Broad’s oft-quoted aphorism says that induction is “the
glory of science and the scandal of philosophy” (Broad 1952:143), and White-
head (1925:25) called induction “the despair of philosophy.” Howson (2000:14–
15, 2) concluded that “Hume’s argument is one of the most robust, if not the
most robust, in the history of philosophy,” and it simply is “actually correct.”

Hume’s critique of induction appeared in his anonymous, three-volume A
Treatise of Human Nature, which was a commercial failure and drew heavy
criticism from his fellow Scottish philosophers Thomas Reid and James Beattie.
Subsequently, his admirably brief An Enquiry Concerning Human Understanding
reformulated his critique, and that punchy book was a great success. Because
Hume’s advertisement in the latter work dismisses the former as a juvenile work,
the discussion here follows the usual custom of examining just the Enquiry.

Hume’s argument in Chapters 4 and 5 of his Enquiry has three key premises
followed by the conclusion: (1) Any verdict on the legitimacy of induction
must result from deductive or inductive arguments, because those are the only
kinds of reasoning. (2) A verdict on induction cannot be reached deductively. No
inference from the observed to the unobserved is deductive, specifically because
nothing in deductive logic can ensure that the course of nature will not change.
(3) A verdict cannot be reached inductively. Any appeal to the past successes
of inductive logic, such as that bread has continued to be nutritious and that
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Induction lost and regained 169

the sun has continued to rise day after day, is but worthless circular reasoning
when applied to induction’s future fortunes. Therefore, because deduction
and induction are the only options, and because neither can reach a verdict
on induction, the conclusion follows that there is no rational justification for
induction. Incidentally, whereas the second premise, that of no deductive link
from the past to the future, had been well known since antiquity, the third
premise, that of no (legitimate and noncircular) inductive link from the past to
the future, was Hume’s original and shocking innovation.

Induction suffered a second serious blow in the mid 1950s, two centuries after
Hume, when Goodman (1955) propounded his “new riddle” of induction. “The
new riddle of induction has become a well-known topic in contemporary ana-
lytic philosophy. . . . There are now something like twenty different approaches
to the problem, or kinds of solutions, in the literature. . . . None of them has
become the majority opinion, received answer, or textbook solution to the
problem” (Douglas Stalker, in Stalker 1994:2).

Briefly, Goodman’s argument ran as follows. Consider emeralds examined
before time t, and suppose that all of them have been green (where t might be,
say, tomorrow). The most simple and foundational inductive procedure, called
the straight rule of induction, says that if a certain property has been found for a
given proportion of many observed objects, then the same proportion applies
to all similar unobserved objects as well as to individual unobserved objects.
For example, if numerous rolls of a die have given an outcome of 2 with a
frequency of nearly 1/6, then inductive logic leads us to the conclusion that
the frequency of that outcome in all other rolls will also be 1/6, and likewise
that the probability of any particular future roll giving that outcome will be
1/6. Similarly, those observations before time t of many emeralds that are all
green support the inductive conclusion that all emeralds are green, as well as
the prediction that if an emerald is examined after time t, it too will be green.

Then Goodman introduced a new property, “grue,” with the definition that
an object is grue if it is examined before time t and is green, or if it is not examined
before time t and is blue. Admittedly, this is a rather contrived property, and
the philosophical discussion of grue is quite technical and rather perplexing.
But the main point is that Goodman showed that only some properties are
appropriate (projectable) for applications of the straight rule of induction,
but others are not. So how can one decide in a nonarbitrary manner which
properties are projectable? Apart from clear criteria to discern when the straight
rule is applicable, there is a danger that it will be used when inappropriate,
thereby “proving” too much, even including contradictory conclusions.

All too predictably, Hume had complained that all received systems of phi-
losophy were defective and impotent for justifying even the simple straight
rule of induction. Goodman’s complaint, however, was the exact opposite. His
concern was not that induction proves too little but rather that it proves too
much: a method that can prove anything proves nothing. Understand that
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170 Inductive logic and statistics

Goodman, like his predecessor Hume, was not intending to wean us from
common sense, such as causing us to worry that all of our emeralds would
turn from green to blue tomorrow. Rather, he was deploying the new riddle to
wake us to the challenge of producing a philosophically respectable account of
induction.

Finally, and perhaps most important, the great generality of those old and new
problems of induction must be appreciated. Hume and Goodman expressed
their arguments in terms of time: past and future, or before and after time t.
But thoughtful commentators have discerned their broader scope. Gustason
(1994:205) assimilated Hume’s argument to a choice among various standard
and nonstandard inductive logics. Accordingly, the resulting scope encompasses
any and all inductive arguments, including those concerning exclusively past
outcomes.

Howson (2000:30–32) followed Goodman in interpreting Goodman’s argu-
ment as a demonstration that substantial prior knowledge about the world
enters into our (generally sensible) choices about when to apply induction and
how much data to require. Couvalis (1997:48) has cleverly said it all with a
singularly apt example: “Having seen a large number of platypuses in zoos and
none outside zoos, we do not infer that all platypuses live in zoos. However,
having seen a small number of platypuses laying eggs, we might infer that all
platypuses lay eggs.” Similarly, Howson (2000:6, 197) observed that scientists
are disposed to draw a sweeping generalization about the electrical conductivity
of copper from measuring current flow in a few samples. But, obviously, many
other scientific generalizations require enormous sample sizes.

Responding first to Hume’s critique of induction, the role of common sense
is critical. Hume said that we need not fear that doubts about induction “should
ever undermine the reasonings of common life” because “Nature will always
maintain her rights, and prevail in the end over any abstract reasoning whatso-
ever,” and “Custom . . . is the great guide of human life” (Beauchamp 1999:120,
122). Hume’s conclusion is not that induction is shaky but rather that induction
is grounded in custom or habit or instinct, which we share with animals, rather
than in philosophical reasoning. But Hume’s argument depends on a controver-
sial assumption that common sense is located outside philosophy rather than
being an integral part and foundation of philosophy.

Indeed, when philosophy’s roots in common sense are not honored, a char-
acteristic pathology ensues: instead of natural philosophy happily installing
science’s presuppositions once, at the outset, by faith in a trifling trinket of
common-sense knowledge, a death struggle with skepticism gets repeated over
and over again for each component of scientific method, including induc-
tion. The proper task, “to explain induction,” swells to the impossible task, “to
defeat skepticism and explain induction.” If Hume’s philosophy cannot speak in
induction’s favor, that is because it is a truncated version of philosophy that has
exiled animal habit rather than having accommodated our incarnate human
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nature as an integral component of philosophy’s common-sense starting points,
as Reid had recommended.

Plainly, all of the action in Hume’s attack on induction derives ultimately
from the concern that the course of nature might change, but that is simply
the entrance of skepticism. His own examples include such drastic matters as
whether or not the sun will continue to rise daily and bread will continue to
be nutritious. Such matters are nothing less than philosophy’s ancient death
fight with skepticism! They are nothing less than the end of the world! In the
apocalypse proposed by those examples, not only does induction hang in the
balance but also planetary orbits and biological life. As Himsworth (1986:87–
88) observed in his critique of Hume, if the course of nature did change, we
would not be here to complain! So as long as we are here or we are talking about
induction, deep worries about induction are unwarranted. Consequently, seeing
that apocalypse as “the problem of induction” rather than “the end of the world”
is like naming a play for an incidental character. The rhetoric trades in obsessive
attention to one detail.

Turning next to Goodman’s new riddle of induction, it shows that although
the straight rule of induction is itself quite simple, judging whether or not to
apply it to a given property for a given sample is rather complicated. These
judgments, as in the example of platypuses, draw on general knowledge of
the world and common sense. Such broad and diffuse knowledge resists tidy
philosophical analysis.

Summary

Induction reasons from actual data to an inferred model, whereas deduction
reasons from a given model to expected data. Both are important for sci-
ence, composing the logic or “L” portion of the PEL model. Probability is the
deductive science of uncertainty, whereas statistics is the inductive science of
uncertainty.

Aristotle, medieval philosopher-scientists, and modern scholars have devel-
oped various inductive methods. But not until the publication in 1763 of Bayes’s
theorem was the problem finally solved of relating conditional probabilities of
the form P(E | H), the probability of evidence E given hypothesis H, found in
deduction with reverse conditional probabilities of the form P(H | E) required
in induction. Bayes’s theorem was illustrated with a simple example regarding
blue and white marbles drawn from an urn. Inductive conclusions can be robust
despite considerable difficulties with controversial background information,
messy data, wrong hypotheses, and different statistical methods. Particularly
when the weight of the evidence grows exponentially with the amount of the
evidence, increased data quantity can often compensate for decreased data qual-
ity. However, the need to specify prior probabilities, which can be unknown
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172 Inductive logic and statistics

or even controversial, prompted the development of an alternative paradigm
intended to be more applicable and objective.

Frequentist inference, which is a competitor to Bayesian inference, was illus-
trated with the same marble experiment. Frequentist methods seek to minimize
Type I errors, rejecting a true null hypothesis, and Type II errors, accepting a
false null hypothesis, but this is challenging because of the inevitable trade-
off between these two kinds of errors. Statistical significance is assessed by
p-values that express the probability of getting an outcome as extreme, or more
extreme, than the actual experimental outcome under the assumption that the
null hypothesis is true. But sometimes error rates other than the Type I and
Type II error rates are more relevant, particularly the False Discovery Rate. And
p-values have been criticized because their strange dependence on stopping
rules and imaginary outcomes undermines the presumed pursuit of objectiv-
ity and because their actual significance depends strongly on the number of
samples.

Bayesian decision theory was illustrated with a simple example of a farmer’s
cropping decision. Whereas inference problems pursue true beliefs, decision
problems pursue good actions. Decision theory requires one more axiom
beyond those already needed for probability and statistics, an axiom of desir-
ability saying in essence that the utility or desirability of an action equals the
average of the utilities for its various outcomes weighted by their probabilities.

Inductive logic has received far more philosophical criticism than all of
the other components of scientific method combined. David Hume argued
that philosophy cannot justify any inductive procedures, including the simple
straight rule of induction. More recently, Goodman’s new riddle of induction
showed the exact opposite, that the straight rule of induction can be used
to prove anything – which is equally problematic. But given common-sense
presuppositions, induction can be defended and implemented effectively.

Study questions

(1) Recall that the vertical bar in a conditional probability is read as “given,” so
P(A | B) means the probability of A given B. Let H denote a hypothesis and
E denote some evidence. How do P(H | E) and P(E | H) differ in meaning
and in numerical value? How are they related by Bayes’s theorem? How do
they pertain to scientists’ main research questions?

(2) List several kinds of problems that sometimes plague scientific experiments.
How can inductive logic or statistics reach reliable and robust conclusions
despite such problems?

(3) Define and compare Type I, Type II, and False Discovery Rate (FDR)
error rates. Suppose that your research has two steps: an inexpensive initial
screening for numerous promising candidates, followed by a very expensive
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final test for promising candidates. Which kind of error rate would be most
relevant for the initial screening and why?

(4) Does either the Bayesian or frequentist paradigm have a legitimate claim
overall to greater objectivity and, if so, for exactly what reasons? What is
the relative importance of statistical paradigm and evidential strength in
achieving objectivity?

(5) Describe Hume and Goodman’s riddles of induction. What are your own
responses to these riddles? Do they undermine induction or not? What role
do common-sense presuppositions play in a defense of induction?
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Parsimony and efficiency

The principle of parsimony recommends that from among theories fitting the
data equally well, scientists choose the simplest theory. It has four common
names, also being called the principle of simplicity, the principle of economy,
and Ockham’s razor (with Ockham sometimes latinized as Occam).

This book’s account of science’s evidence, which is the “E” portion of the PEL
model, takes the form primarily of this chapter’s detailed analysis of parsimony.
Mere data or observations become evidence when they are brought to bear
on hypotheses or theories. This impact of data on theory is guided by several
criteria, including the fit of the data with the theory and the parsimony of
the theory. Most aspects of evidence are rather obvious to scientists and most
evidence is gathered by means of specialized techniques used only within a given
discipline. Accordingly, most of what needs to be said about scientific evidence is
in the domain of specialized disciplines rather than general principles. However,
the one great exception is parsimony, which is not obvious to many scientists,
and yet considerations of parsimony pervade all of the sciences, so it is among
science’s general principles.

Parsimony is not an unusually difficult topic, compared with the ordinary
topics routinely studied by scientists. Also, because parsimony pervades all of
science, it is easy to find interesting examples and productive applications. Nev-
ertheless, the implementation of parsimony has always faced serious obstacles.
In the first place, many scientists seem inclined to think that only a few words,
such as “Prefer simpler models,” can exhaust the subject. Such complacency
does not motivate further study and new insight. Also, the literature on parsi-
mony is scattered in philosophy, statistics, and science, but few scientists read
widely in those areas. Yet, each of those disciplines provides distinctive elements
that must be combined to achieve a full picture.

In some areas of science and technology, such as in signal processing, the
principle of parsimony has already been well understood to great advantage.
But, in most areas, a superficial understanding of parsimony has been a serious
deficiency of scientific method, costing scientists billions of dollars annually in
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Historical perspective on parsimony 175

wasted resources. Frequently, a parsimonious model that costs a few seconds
of computer time can provide insight and increase accuracy as much as would
the collection of more data that would cost thousands or millions of dollars.
If more scientists really understood parsimony, science and technology would
gain considerable momentum.

Historical perspective on parsimony

Parsimony has been discussed with two distinct but related meanings. On the
one hand, parsimony has been considered a feature of nature, that nature
chooses the simplest course. On the other hand, parsimony has been deemed
a feature of good theories, that the simplest theory that fits the facts is best.
These are ontological and epistemological conceptions, respectively, concerning
nature itself and humans’ theories about nature.

The venerable law of parsimony, the lex parsimoniae, has a long history.
Aristotle (384–322 bc) discussed parsimony in his Posterior Analytics: “We
may assume the superiority ceteris paribus [other things being equal] of the
demonstration which derives from fewer postulates or hypotheses” (McKeon
1941:150). He used parsimony as an ontological principle in rejecting Plato’s
Forms. Plato (c. 427–347 bc) believed that both the perfect Form of a dog and
individual dogs existed, but Aristotle held the more parsimonious view that only
individual dogs existed. Hence, even something as elemental as the tendency in
Western thought to regard individual physical objects as being thoroughly real
derives from an appeal to parsimony. Likewise, in his influential commentary on
Aristotle’s Metaphysics, Averroes (Ibn Rushd, 1126–1198) regarded parsimony
as a real feature of nature.

Robert Grosseteste (c. 1168–1253), who greatly advanced the use of experi-
mental methods in science, also emphasized parsimony, as here in commenting
on Aristotle: “That is better and more valuable which requires fewer, other
circumstances being equal, just as that demonstration is better, other circum-
stances being equal, which necessitates the answering of a smaller number of
questions for a perfect demonstration or requires a smaller number of sup-
positions and premisses from which the demonstration proceeds” (Crombie
1962:86). Grosseteste held parsimony not merely as a criterion of good expla-
nations or theories but more fundamentally as a real, objective principle of
nature. Thomas Aquinas (c. 1225–1274) also espoused a rather ontological ver-
sion of parsimony, writing that “If a thing can be done adequately by means of
one, it is superfluous to do it by means of several; for we observe that nature
does not employ two instruments where one suffices” (Hoffmann, Minkin, and
Carpenter 1996).

William of Ockham (c. 1285–1347) probably is the medieval scholar best
known to modern scientists, through the familiar principle of parsimony, often
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176 Parsimony and efficiency

called Ockham’s razor. “It is quite often stated by Ockham in the form: ‘Plurality
is not to be posited without necessity’ (Pluralitas non est ponenda sine necessi-
tate), and also, though seldom: ‘What can be explained by the assumption of
fewer things is vainly explained by the assumption of more things’ (Frustra fit
per plura quod potest fieri per pauciora)” (Boehner 1957:xxi).

Just what does this principle mean? “What Ockham demands in his maxim
is that everyone who makes a statement must have a sufficient reason for its
truth, ‘sufficient reason’ being defined as either the observation of a fact, or
an immediate logical insight, or divine revelation, or a deduction from these”
(Boehner 1957:xxi). However, Ockham’s principle of sufficient reason tends to
reach modern scientists in a somewhat thinner version of parsimony, merely
saying something like: “one should not complicate explanations when simple
ones will suffice” (Hoffmann et al. 1996). Ockham insisted that parsimony was
an epistemological principle for choosing the best theory, in contrast to his
predecessor Robert Grosseteste and his teacher John Duns Scotus, who had
interpreted parsimony as also an ontological principle for expecting nature to
be simple. In Ockham’s view, “This principle of ‘sufficient reason’ is episte-
mological or methodological, certainly not an ontological axiom” (Boehner
1957:xxi).

Nicolaus Copernicus (1473–1543) inherited the geocentric cosmology of
Aristotle and Ptolemy. It fit the data within observational accuracy, accorded
with the common-sense feeling that the earth was unmoving, and enjoyed the
authority of Aristotle. However, its one major flaw was lack of parsimony, with
its complicated cycles and epicycles for each planet. Consequently, Copernicus
offered a new theory: that the earth revolved on its axis daily and journeyed
around the sun annually. His main argument featured parsimony: the helio-
centric model was simpler, involving fewer epicycles, and the various motions
were interlinked in a harmonious system. “I found at length by much and long
observation, that if the motions of the other planets were added to the rotation
of the earth, and calculated as for the revolution of that planet, not only the
phenomena of the others followed from this, but that it so bound together both
the order and magnitudes of all the planets and the spheres and the heaven itself
that in no single part could one thing be altered without confusion among the
other parts and in all the Universe. Hence for this reason . . . I have followed this
system” (Dampier 1961:110).

Isaac Newton (1642–1727) further anchored parsimony’s importance with
the four rules of reasoning in his monumental and influential Philosophiae
Naturalis Principia Mathematica (Cajori 1947:398–400). Parsimony was the
first rule, expressed in a vigorously ontological version concerning nature that
echoed words of Aristotle and Duns Scotus: “We are to admit no more causes
of natural things than such as are both true and sufficient to explain their
appearances.” Newton explained: “To this purpose the philosophers say that
Nature does nothing in vain, and more is in vain when less will serve; for
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Historical perspective on parsimony 177

Nature is pleased with simplicity, and affects not the pomp of superfluous
causes.” Again, parsimony, in a distinctively epistemological version concerning
theories about causes, was the second of Newton’s rules, corollary to the first:
“Therefore to the same natural effects we must, as far as possible, assign the same
causes,” such as for “respiration in a man and in a beast” and “the reflection
of light in the earth, and in the planets.” Even his third and fourth rules about
experiments and induction rested on the presupposition that nature “is wont
to be simple.”

Henri Poincaré (1854–1912) related parsimony to generalization: “Let us first
observe that any generalization implies, to a certain extent, belief in the unity
and simplicity of nature. Today, ideas have changed and, nevertheless, those
who do not believe that natural laws have to be simple, are obliged to behave
as if it was so. They could not avoid this necessity without rendering impos-
sible all generalization, and consequently all science” (A. Sevin, in Hoffmann
et al. 1996). Yet Poincaré also appreciated the subtlety of simplicity, bringing
counterpoint with his view that “simplicity is a vague notion” and “everyone
calls simple what he finds easy to understand, according to his habits” (A. Sevin,
in Hoffmann et al. 1996).

More recently, Albert Einstein (1879–1955) employed parsimony in his dis-
covery of general relativity: “Perhaps the scientist who most clearly under-
stood the necessity for an assumption about the simplicity of [scientific] laws
was Albert Einstein. In an informal conversation he once told me about his
thoughts in arriving at The General Theory of Relativity. He said that after
years of research, he arrived at a particular equation which, on the one hand,
explained all known facts and, on the other hand, was considerably simpler
than any other equation that explained all these facts. When he reached this
point he said to himself that God would not have passed up the opportunity
to make nature this simple” (Kemeny 1959:63). Likewise, Einstein spoke of
“the grand aim of all science, which is to cover the greatest possible number
of empirical facts by logical deductions from the smallest possible number
of hypotheses or axioms” (Nash 1963:173). He also remarked that “Every-
thing should be made as simple as possible, but not simpler” (Hoffmann et al.
1996).

Historically, philosophers and scientists have been the scholars who have
written about parsimony. More recently, statisticians have also explored this
subject, offering two new and important results. First, simple theories tend to
make reliable predictions. Second, Bayesian analysis automatically gives sim-
pler theories higher prior probabilities of being true, thereby favoring simpler
theories (Jefferys and Berger 1992).

In line with these statisticians, the philosopher Richard Swinburne also saw
simplicity as evidence of truth and of reliable predictions: “I seek . . . to show
that – other things being equal – the simplest hypothesis proposed as an expla-
nation of phenomena is more likely to be the true one than is any other available
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178 Parsimony and efficiency

hypothesis, that its predictions are more likely to be true than are those of any
other available hypothesis, and that it is an ultimate a priori epistemic principle
that simplicity is evidence of truth” (Swinburne 1997:1).

The 1950s was a great decade for parsimony. Statistician Charles Stein pub-
lished a seminal paper in 1955 that began the literature explaining how parsimo-
nious models can gain accuracy and efficiency. But typical applications require
millions or billions of arithmetic steps. For such calculations, reasonably afford-
able and available digital computers needed transistors, rather than the clumsy
vacuum tubes used previously. Physicists John Bardeen, Walter Brattain, and
William Shockley co-invented the transistor in 1947 and were awarded the
1956 Nobel Prize in physics. Transistors became increasingly available during
the 1950s. Computer programmer John Backus with several associates invented
FORTRAN, the first high-level programming language, in 1957. This language
made it much easier for statisticians and scientists to use computers. These
three resources – new statistical theory, fast transistor circuits, and convenient
programming languages – allowed breakthroughs that went far beyond the
earlier insights on parsimony from brilliant philosophers such as Aristotle and
William of Ockham.

During the subsequent decades, there have been astonishing advances in
statistical theory and computing power. Consequently, there are tremendous
opportunities to put parsimony to work for gaining accuracy and efficiency,
improving predictions and decisions, increasing repeatability, favoring truth,
and accelerating progress. Parsimony has had an intriguing history but, more
important, it will have an exciting future.

Preview of basic principles

This chapter’s primary means for exploring parsimony are the following three
examples of parsimony at work in science. But simplicity is a complicated topic!
Accordingly, this section first previews five basic principles.

Signal and Noise. Data are imperfect, mixtures of real signal and spurious
noise. These terms, “signal” and “noise,” originated in the context of radio
communication, where a receiver picks up the signal from a transmitter plus
noise from various natural and human sources. But, in statistics, these terms are
used more generally to refer to treatment or causal effects and random errors.
Hence, the data equal the signal plus the noise.

There is a fundamental difference between signal and noise in that the signal
ordinarily is relatively simple, caused mostly by only a few major treatment
differences or causal factors, whereas the noise typically is extremely complex,
caused by numerous small uncontrolled factors. Because the signal is parsi-
monious, it can be captured or fitted readily by an appropriate parsimonious
model, but complex noise inevitably requires a complex model.
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Preview of basic principles 179

Model Families. Parsimony is important throughout science, particularly
because generalization requires an appeal to parsimony (at least implicitly), as
Poincaré emphasized. But parsimony is especially applicable for the common
situation in which scientists are considering a model family for analyzing a
given dataset. A model family is a sequence of models of the same mathematical
form that include more and more parameters. Three such families are used in
this chapter.

First, a familiar family is the polynomial family. Let x be the independent
variable; y the dependent variable; and a, b, c, and d be constants. Then, the
members of the polynomial family are the constant model, y = a; the linear
model, y = a + bx; the quadratic model, y = a + bx + cx2; the cubic model,
y = a + bx + cx2 + dx3; and so on. The data structure that the polynomial model
addresses is N paired observations of x and y. Given N pairs, the polynomial
family has N members with 1 to N terms, the highest-order term being a constant
times xN−1. The highest member is called the full or saturated model. The full
model automatically fits the data perfectly, whereas in general the lower-order
models fit approximately. For instance, with 7 data points, the highest powers
of x are 0, 1, 2, . . . , 6 in the 7 increasingly complex (decreasingly parsimonious)
members of the polynomial family.

Second, principal components analysis (PCA) is a common analysis in
numerous applications in science and technology, and it also involves a model
family. The data structure that PCA addresses is a two-way data table with R
rows and C columns. For example, plant breeders often measure yields for G
genotypes tested in E environments. PCA provides a suitable model family for
such data. A data table with R rows and C columns may be conceptualized
geometrically as R points in a C-dimensional space, with each point’s coor-
dinates specified by the C values in its row (or the reverse, with C points in
an R-dimensional space). The first principal component is the least-squares
line through this high-dimensional cloud of points, meaning that perpendic-
ular projections of these points onto that line maximize the sum of squared
distances along that line (and simultaneously minimize the sum of squared
distances off that line). The first two principal components specify the least-
squares plane in this cloud of points, so they are often graphed to show the
structure of the data because they provide the best two-dimensional view of
this high-dimensional cloud. Likewise, the first three principal components
provide the best three-dimensional approximation to the original cloud, and
so on for increasingly complex members of the PCA model family. A com-
mon variant of PCA, called doubly-centered PCA, first subtracts the average
for each row from each datum in that row, and the same for columns. In agri-
cultural applications, its most common name is the Additive Main effects and
Multiplicative Interaction (AMMI) model. For G genotypes and E environ-
ments, the highest or full member of the AMMI family has the lesser of G −
1 or E − 1 principal components. The lowest member, denoted by AMMI-0,
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180 Parsimony and efficiency

has no principal components but rather only the additive effects, namely, the
grand mean, the genotype deviations from the grand mean, and the environ-
ment deviations from the grand mean (Gauch 1992:85–96). For instance, the
members of the AMMI family for a 7 × 10 data matrix are the seven models
AMMI-0, AMMI-1, AMMI-2, and so on, up to AMMI-6, which is the full or
saturated model that is also denoted by AMMI-F.

Third and finally, multiple linear regression is an extremely popular statistical
method that also involves a model family. The data structure that it addresses is
a number M of observations or samples for which a dependent variable Y is to be
predicted or estimated on the basis of N predictor variables measured for each
observation, X1, X2, . . . , XN, where these variables are bolded to indicate that
they are vectors of length M. For instance, the data may comprise measurements
at several farms of wheat yield, rainfall, soil nitrogen, average August tempera-
ture, and altitude, and the objective is to predict wheat yield at each farm from
these other four measurements. Multiple linear regression constitutes a model
family because there are many choices about which predictors to include and
which to exclude in order to get the most accurate predictions. Given N pre-
dictors, there are 2N members of the multiple regression model family because
each predictor can be in or out. Ordinarily, a rather parsimonious choice will
be best. For instance, the best predictor of wheat yield might use only rainfall
and soil nitrogen, while discarding the other two variables.

Statistical Criteria. Given a model family applied to noisy data, some statis-
tical criterion must be specified to determine the best choice. An important goal
is predictive accuracy, but this must be implemented by a specific procedure or
equation. Statisticians have devised two basic kinds of strategies.

One strategy involves data resampling techniques, such as cross-validation
and the bootstrap. A portion of the data is selected at random, typically about
10% to 25%, and is set aside temporarily to serve as validation data while the
model family is fitted to the remaining data. The member with the smallest
mean square prediction error for the validation data is selected. Typically, this
procedure is repeated many times with different randomizations and the results
are averaged for greater accuracy. Often, the final results are based on the selected
member of the model family being applied to the recombined, entire dataset.

The other strategy for model choice is to use the Bayesian Information
Criterion (BIC), also called the Schwarz Bayesian Criterion (SBC) invented by
Schwarz (1978), which approximates the logarithm of the Bayes factor discussed
in Chapter 9. The similar Akaike Information Criterion (AIC), or one of the less
common alternatives, can also be used. The equations for BIC or AIC contain
two terms, one rewarding model fit to the data and another penalizing model
complexity (or rewarding model parsimony). Thereby, such criteria strike a
balance between fit and parsimony intended to optimize predictive accuracy.

The statistical literature on model choice is extensive and technical (McQuar-
rie and Tsai 1998; Joo, Wells, and Casella 2010). Data resampling techniques are
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Figure 10.1 Predictive and postdictive accuracies of models differing in terms of

parsimony. The abscissa represents more parsimonious models to the left (and more

complex models to the right), and the ordinate shows model accuracy. Imperfect data are

mixtures of real signal and spurious noise. Signal is recovered quickly at first as models

become more complex, but thereafter signal is recovered slowly. By contrast, noise is

recovered slowly at first while much signal is being recovered, then for a brief time noise

is recovered more quickly, but thereafter slowly. Postdictive accuracy increases as the

signal plus the noise, so it always increases for more and more complex models. But

predictive accuracy increases as the signal minus the noise, so it rises to a maximum for

some relatively parsimonious model, and thereafter declines.

rather popular. When several criteria for model selection are compared, often
BIC wins. For example, Piepho and Gauch (2001) compared 14 model-selection
criteria for simulated genetics data for which the true model was known by con-
struction, and BIC performed best. However, for extremely large models, AIC
typically outperforms BIC.

Ockham’s Hill. Given noisy data analyzed by a model family that is evaluated
by a statistical criterion, Figure 10.1 shows what happens. The abscissa depicts
a sequence of increasingly parsimonious models moving toward the left (or
increasingly complex models moving toward the right). For example, this could
be a polynomial family, with its most simple model (the constant model) at
the extreme left; then the more complex linear, quadratic, cubic, and higher
models progressing toward the right; and finally its most complex model (the
full model) at the extreme right. The full model has as many parameters as the
data, and its estimates automatically equal the data exactly (such as a quadratic
equation with its three parameters automatically going through three data
points exactly). The ordinate shows model accuracy or goodness of fit.
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182 Parsimony and efficiency

Consider first the dashed lines for signal and noise. Because only a few
main causal factors determine most of the signal, the relatively simple signal
is recovered quickly in early-model parameters and then slowly thereafter. But
the response for noise is more involved, with recovery initially slow, then briefly
rapid, and then again slow. The initial focus on signal suppresses recovery
of noise at first. But after most of the signal has been captured, the focus
then shifts to the noise and chance correlations in the noise can be exploited
briefly by statistical analyses to accelerate the recovery of noise. Then, after that
opportunity has been largely exhausted, noise is recovered slowly.

The data are usually a limited sample from a larger population of interest,
such as several hundred persons in a clinical trial who are afflicted by a disease
that strikes millions. This distinction between a sample and a population leads
to the further distinction between the goal of accurately fitting just the sample
data, termed postdiction, and the goal of accurately fitting the entire population
from which the sample was drawn, termed prediction. Nearly always, a scientist’s
objective is prediction rather than merely postdiction. This distinction between
prediction and postdiction is shown by the solid lines in Figure 10.1. It has
subtler and greater implications than many scientists realize.

On the one hand, the goal in postdiction is to model or fit the sample data,
with no serious concern about a larger population or about the distinction
between signal and noise. Recovery of signal and recovery of noise are rewarded
alike. Accordingly, the line for postdictive accuracy is depicted as the signal line
plus the noise line. The full model at the extreme right automatically recovers
all of the signal and noise.

On the other hand, the goal in prediction is to model the entire population of
interest. Recovery of signal is rewarded, whereas recovery of noise is penalized
because noise is idiosyncratic and has no predictive value. Accordingly, the line
for predictive accuracy is depicted as the signal line minus the noise line. Note
that the lines for postdiction and prediction are different because of noise. Were
the noise negligible, these two lines would be the same.

Quite importantly, these two lines have different shapes, reaching their peaks
of maximum accuracy at different places. Postdictive accuracy is automatically
maximized by the most complex, full model at the extreme right. But predictive
accuracy is maximized for some relatively parsimonious model closer to the
left, rather than at the extreme right where the full model equals the data. This
means that parsimonious models can be more predictively accurate than their
data! That is the principal message of this chapter. The shape of this response for
predictive accuracy was given the apt name “Ockham’s hill” by MacKay (1992),
in honor of William of Ockham.

Designed Experiments. Scientific experiments generally have two designs:
a treatment design and an experimental design (Gauch 2006). The treatment
design specifies the deliberately controlled factors of scientific interest, such
as different environments or different genotypes in an agricultural trial. The

Co
py
ri
gh
t 
@ 
20
12
. 
Ca
mb
ri
dg
e 
Un
iv
er
si
ty
 P
re
ss
.

Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e 
co
py
ri
gh
t 
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 9/27/2019 11:29 AM via JAMES MADISON UNIVERSITY
AN: 527886 ; Gauch, Hugh G..; Scientific Method in Brief
Account: s8863137.main.eds



Curve fitting 183

experimental design specifies how the treatments are allocated to the experi-
mental units, which usually involves randomization and replication to reduce
bias and increase accuracy.

For example, a yield trial could test G genotypes in E environments using
R replications, for a total of GER observations. The two-way factorial of G
genotypes by E environments constitutes the treatment design, whereas the R
replications are involved in the experimental design. Ordinarily, the replications
are organized in some specific scheme, such as subdividing the field used for an
agricultural trial into a number of subunits or blocks that are smaller and more
compact than the field as a whole and, hence, hopefully are rather uniform.

Blocks can be complete, including all treatments; or incomplete, includ-
ing only some. Importantly, statistical analysis of an incomplete block design
pursues two purposes, reducing the estimated errors to increase statistical sig-
nificance, and adjusting treatment estimates closer to their true values. But
complete blocks are less helpful, pursuing only the first of those two purposes.

However, for the present chapter on parsimony, the important message is
simply that experiments have two designs, the treatment design and the exper-
imental design, and both can provide opportunities to gain accuracy. Most
scientists are abundantly aware of the value of replication to gain accuracy,
although many would not realize that incomplete blocks are more aggressive
than complete blocks by virtue of adjusting estimates closer to their true val-
ues. But precious few scientists in many disciplines, including agriculture and
medicine, are aware of the other opportunity to gain accuracy by parsimo-
nious modeling of the treatment design for many common designs. That other
opportunity is what this chapter is about. Neglect of this other opportunity is
regrettable because its potential for accuracy gain is often several times greater
than the potential from replicating and blocking. It is ironic how often scien-
tists implement the smaller of these opportunities to gain accuracy, when the
larger opportunity is available but neglected. Of course, best practices require
exploiting both opportunities.

Curve fitting

The first of this chapter’s three examples of parsimony is curve fitting using the
polynomial model family. The salient features of this example are that the true
model is already known exactly, and the noise is also known exactly. Knowing
both the signal and noise exactly allows for an unusually penetrating analysis,
elucidating principles that subsequently can be recognized in more complex
and realistic settings. Obviously, to get an example with signal and noise known
exactly requires that we place ourselves in a very unusual position. Such an
example must be constructed by us, not offered to us by nature. Accordingly, it
must come from mathematics, not from the empirical sciences.
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Figure 10.2 A cubic equation (solid line) is modeled with a quadratic equation (dashed

line). Values of the true cubic equation are shown at seven levels of X (•). Noisy data are

generated at each level for two replicates (•) and their average (+), with these averages

having an S/N ratio of 5. Also shown are values for the quadratic equation fitted to the

noisy data (◦). Note that at every level except the sixth, the fitted quadratic’s values are

closer to the true values than are the data, the averages over replications. Remarkably,

this parsimonious model is more accurate than its noisy data. It achieves a substantial

statistical efficiency of 2.10, meaning that on average the quadratic model based on only

two replications is slightly more accurate than averages based on twice as much data,

four replications. So modeling helps predictive accuracy as much as would collecting twice

as much data, but modeling is far more cost-effective when the data are expensive.

(Adapted from Gauch 1993 and reproduced with kind permission from American

Scientist.)

Figure 10.2 shows a cubic equation, y = 12.00 − 3.50x + 1.17x2 − 0.07x3,
and its values at seven levels, x = 1, 2, . . . , 7. By construction, this cubic equation
is the true model or signal, known exactly. To mimic imperfect experimental
data, random noise is added that is also known exactly. This noise has a normal
distribution adjusted to have a variance of 0.2 times that of the cubic equation’s
data, which constitutes the signal. By definition, the signal-to-noise (S/N) ratio
is the ratio of these variances, namely, 1/0.2 = 5 in this instance. Frequently,
experiments are replicated, which is represented here by showing these noisy
data as averages of two replicates (that have twice as much variance as do their
averages). Finally, this figure also shows the least-squares quadratic equation
fitted to these noisy data, y = 7.95 + 1.13x + 0.06x2.

Note that at every level except the sixth, the fitted quadratic’s values are closer
to the true values than are the data, the averages over replications. Some persons
may find this outcome surprising but, indeed, this model is more accurate than
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Figure 10.3 Ockham’s hill for the noisy cubic data having an S/N ratio of 5, using the

polynomial family encompassing the constant model up to the to sixth-order model. The

quadratic model is at the peak of Ockham’s hill, achieving the greatest statistical

efficiency of 2.22. To the left of the peak, excessively simple models underfit real signal;

to the right, excessively complex models overfit spurious noise.

its data, even though this fitted quadratic model is not the true cubic model!
The sum of squares (SS) of differences between the data and true values is
24.67, and the SS of differences between the quadratic model and true values is
11.75. By definition, the statistical efficiency is the ratio of these values, 24.67/
11.75 ≈ 2.10. A statistical efficiency of 1 means that a model has the same predic-
tive accuracy as the data, whereas a statistical efficiency above or below 1 implies
better or worse accuracy. Because the full model’s estimates equal the actual data,
its statistical efficiency is automatically exactly 1. Also, a statistical efficiency of
2 or 3 means that a model achieves the same accuracy as would the full model’s
estimates (namely, averages over replications) based on twice or thrice as many
replications. Because this experiment has two replications, the quadratic model
is as accurate as would be averages based on 2 × 2.10 = 4.20 replications.
So, modeling increases accuracy as much as would collecting twice as much
data!

The case shown in Figure 10.2 invites three generalizations. Instead of mea-
suring performance with just one set of random noise values, what would be the
performance averaged over numerous repetitions with different noise? Instead
of presenting results for just the quadratic model, what would be the results for
the entire polynomial family? And what would happen at various S/N levels?

Figure 10.3 shows statistical efficiencies for the entire polynomial family
for noisy cubic data with an S/N ratio of 5. There are seven data points, so the
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186 Parsimony and efficiency

polynomial family encompasses the constant model (marked 0 on the abscissa),
linear model (1), quadratic model (2), and so on, up to the sixth-order model
(6). The statistical efficiency of the quadratic model for the single case analyzed
in Figure 10.2 was 2.10, but this figure shows that the average over numerous
repetitions with different noise is slightly different, 2.22. Figure 10.3 shows the
typical response, Ockham’s hill, which was previewed earlier in the line for
prediction in Figure 10.1.

The most predictively accurate member of the polynomial family for these
noisy cubic data is the quadratic model, achieving a substantial statisti-
cal efficiency of 2.22. Efficiency declines in either direction away from the
peak, but for different reasons. To the left of the peak, excessively simple
models are inaccurate because they underfit real signal. To the right of the
peak, excessively complex models are inaccurate because they overfit spu-
rious noise. Optimal accuracy requires a balance between these opposing
problems.

Figure 10.4 further generalizes the results for a wide range of noise levels,
S/N ratios of 0.1 to 100. Beginning with familiar material from Figure 10.3,
note the same results for an S/N ratio of 5 (located about seven-tenths of
the way from 1 to 10 on this logarithmic abscissa), with the quadratic model
most accurate with its statistical efficiency of 2.22. This figure shows that for
rather accurate data having S/N ratios above 16.6, a cubic model is most pre-
dictively accurate, achieving a statistical efficiency of 1.82. But because noise
increases moving to the left, progressively simpler models are best. However, the
fourth-order and higher models never win, including the sixth-order model,
which is the full model, equaling the actual noisy data. So which model is most
predictively accurate depends on the noise level. It makes sense that as noise
increases, fewer of the true model’s parameters can be estimated accurately
enough to be helpful, until finally only the grand mean, which is the parameter
used by the constant model, can resist the onslaught of noise. On the other
hand, cleaner data can support more parameters.

Often scientists encounter the entire Ockham’s hill, as in Figure 10.3. But
Figure 10.4 implies that it is possible to see only the left or right side of the
hill. Extremely noisy data make the simplest model win, so there is a mono-
tonic decrease in accuracy for increasingly complex models, thereby show-
ing only the right side of Ockham’s hill. Likewise, extremely accurate data
make the most complex model win, so only the left side of Ockham’s hill is
seen.

Depending on the statistic used to express predictive accuracy, Ockham’s
hill may be inverted, resulting in Ockham’s valley instead. Figure 10.3 shows
statistical efficiency, which increases with greater accuracy; whereas a statistic
such as the mean square prediction error increases with worse accuracy, so the
result is Ockham’s valley.
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Figure 10.4 Statistical efficiency of the polynomial family over a range of S/N ratios, with

the constant model (0), linear model (1), and others up to the final sixth-order

polynomial (6). The constant model is most predictively accurate for extremely noisy

data, with S/N below 0.15; the linear model is best for S/N from 0.15 to 2.0; the

quadratic model is superior for S/N from 2.0 to 16.6; and the cubic model wins for

relatively accurate data, with S/N above 16.6. With seven data points, the full model is

the sixth-order equation. This full model is always most postdictively accurate but never

most predictively accurate. Notice that for accurate data with an S/N ratio above 16.6, the

true cubic model is most predictively accurate; but for noisier data, progressively simpler

models are most accurate. Consequently, diagnosing the most predictively accurate

member of a model family and determining the true model are distinguishable goals,

sometimes having different answers. (Adapted from Gauch 1993 and reproduced with

kind permission from American Scientist.)

Crop yields

The second example of parsimony at work is familiar to me from my own
research from 1988 to 2012, agricultural yield trials using the AMMI model fam-
ily. Plant breeders use yield trials to select superior genotypes, and agronomists
use them to recommend varieties, fertilizers, and pesticides to farmers. World-
wide, several billion dollars are spent annually on yield trials. These experiments
have helped plant breeders to increase crop yields, typically by about 1% to 1.5%
per year for open-pollinated crops such as corn and 0.5% to 1% per year for
self-pollinated crops such as soybeans. However, there is substantial and worri-
some evidence that wheat and rice yield increases have slackened lately to about
0.5% per year, which is considerably less than during 1960 to 1990.
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Figure 10.5 Ockham’s hill for the soybean data using the AMMI family. The most

predictively accurate member of the AMMI family is AMMI-2, achieving a statistical

efficiency of 1.45, but AMMI-1 is almost as accurate.

The most common type of yield trial tests a number of genotypes in a number
of environments that are location-year combinations, often with replication.
The dataset used here is a New York State soybean trial having 7 genotypes in
10 environments with 4 replications (Gauch 1992:56). Recall that Figure 1.6
showed a photograph from this soybean yield trial.

The salient feature of this agricultural example is that neither the signal nor
the noise is known exactly, quite in contrast to the easy first example with a
known cubic equation and known added noise. We receive the soybean data
from nature, with the signal and noise already mixed together. Indeed, these
data are rather noisy, with typical errors of plus or minus 15%, so they carry only
one significant digit. Because the true signal and added noise are not known
separately and exactly, the method for calculating statistical efficiencies in Figure
10.5 is more complicated than for Figure 10.3, as explained in detail elsewhere
(Gauch 1992:134–153). Greater accuracy for yield estimates also helps in the
search for genes affecting yield (Gauch et al. 2011).

Figure 10.5 shows statistical efficiencies for the soybean data using the AMMI
family. The AMMI-2 model is at the peak of Ockham’s hill, achieving a statistical
efficiency of 1.44, with AMMI-1 a close second. To the left of the peak, excessively
simple models underfit real signal; to the right, excessively complex models
overfit spurious noise.

Looking at the past, between the 1940s and the late 1970s, the principal
achievement of the Green Revolution has been to increase dramatically the yields
of the major grain crops – wheat, corn, and rice – in favorable environments.
This achievement was crucial and it still is, accounting for a large portion of
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Crime rates 189

the world’s food supply. But, unfortunately, there were two unintended and
detrimental side effects. First, the increased productivity and profitability of
major grains prompted many farmers to grow less of other grains, vegetables,
and fruits, thereby restricting diets and causing deficiencies in essential vitamins
and minerals, especially vitamin A, iron, and zinc. Second, the considerable
neglect of marginal environments, which often require different genotypes
than favorable environments, meant little benefit for the millions of persons
whose food comes mainly from those poor environments.

Looking toward the future, the world’s population is currently increasing
about 1.2% per year. But the welcome rise out of poverty for millions, especially
in China and India, implies greater demand for meat production, which uses
much grain. So, crop yields need to increase somewhat more rapidly, about
1.4% per year. The good news is that plant breeders are increasingly poised to
address those two deficiencies of the original Green Revolution. For numerous
vegetable and fruit species, powerful new genetic tools can allow relatively
small projects in several years to increase yields as much as the larger and
longer projects of the Green Revolution decades ago. So, those other crops
can now become more profitable and contribute to a diverse and wholesome
diet, especially because breeders are also selecting for enhanced nutritional
traits. Likewise, relatively small projects can more quickly address marginal
environments, benefiting many of the world’s poorest communities. But the
bad news is that yield advances are needed despite trends in many places toward
less farm land, less water, and more disease pressure – and despite challenging
goals of better environmental stewardship. On balance, a sustained yield increase
of 1.4% per year for the next decade or two seems attainable, until projections of
world population largely level off. However, there is little margin for agricultural
research to be inefficient. If a greater fraction of agricultural researchers learned
how to put parsimony to work in order to get the most out of their experiments
and data, numerous projects, involving many crops in many nations, would
accelerate markedly.

Crime rates

The third and final example of parsimony is a sociological study of crime rates
using the multiple regression model family. This study was first published by
Ehrlich (1973). The present account is based on the reanalysis by Raftery (1995),
using both frequentist and Bayesian methods.

Raftery explained that “Most sociological studies are observational and aim
to infer causal relationships between a dependent variable and independent
variables of interest.” The choice of predictor variables to measure is guided by
theory or background knowledge. But “theory is often weak and vague,” so the
usual strategy is to play it safe by including a long “laundry list” of candidate
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190 Parsimony and efficiency

predictors in hopes of not missing anything important. Multiple regression
provides a standard statistical method for deciding which candidates to include
in the final model. Discarding the irrelevant candidates is important because
including useless variables in the model degrades the results for parameters
of genuine interest. This setup of many candidate predictors and rather weak
theory is quite common, not only in sociology but also in ecology, agriculture,
medicine, and many other fields.

This criminological study by Ehrlich was one of the earliest systematic efforts
to address the question: Do greater punishments reduce crime rates? As Raftery
recounted, there were two competing hypotheses. One hypothesis, which may
be denoted H1, is that criminal behavior is “deviant and linked to the offender’s
presumed exceptional psychological, social, or family circumstances.” The com-
peting hypothesis H2 is that “the decision to engage in criminal activity is a
rational choice determined by its costs and benefits relative to other (legiti-
mate) opportunities.” Ehrlich compiled extensive data on localities from 47
states in the USA. The following paragraph paraphrases Raftery’s description of
the second hypothesis, inserting in parentheses the numbers for the 15 candidate
predictors of crime rates.

The costs of crime are related to the probability of imprisonment (X14) and the average
time served in prison (X15), which in turn are influenced by police expenditures (X4, X5).
The benefits of crime are related to aggregate wealth (X12) and income inequality (X13)
in the surrounding community. The expected net payoff from the alternative of legitimate
activities is related to educational level (X3) and the availability of employment, the latter
being measured by the unemployment rate (X10, X11) and labor force participation rate
(X6). This payoff is expected to be lower for nonwhites (X9) and for young males (X1).
Other possible influences are southern versus northern states (X2), the state population
(X8), and the sex ratio or number of males per female (X7). The principal interest is in
the probability and length of imprisonment, X14 and X15, because hypothesis H2 expects
greater association with crime rates than does H1.

Beginning with the frequentist analysis, Raftery tried three common meth-
ods for choosing statistically significant variables, including the most popular
method, stepwise regression. He also tried two variants of Ehrlich’s models
based on sociological theory. The full model with all 15 predictors was also
included as a baseline for comparison. But the results were perplexing. “There
are striking differences, indeed conflicts, between the results from different
models. Even the statistically chosen models, despite their superficial similarity,
lead to conflicting conclusions about the main questions of interest.”

Progressing to the Bayesian analysis, Raftery based model selection on the BIC
approximation to the logarithm of the Bayes factor. A distinctive feature of the
Bayesian approach is that it can incorporate model uncertainty by averaging
over multiple models that are all supported well by the data. The 15 candi-
date predictors imply 215 = 32,768 possible models. Most of these numerous
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Explanation of accuracy gain 191

possibilities are decidedly bad, so calculations can be simplified by averaging
over only the reasonably good possibilities using a criterion that Raftery terms
Occam’s window – although I prefer not to latinize this philosopher’s name,
so I call it Ockham’s window. Models are excluded that (a) are 20 times less
likely than the most likely model, corresponding to a BIC difference of 6; and
(b) contain predictors for which there is no evidence in the sense that they
have more likely sub-models nested within them that omit those predictors.
For this study of crime rates, Ockham’s window reduced the original 32,768
models to a very manageable 14 models. Raftery reported that this reduction is
quite typical. These foremost models within Ockham’s window were parsimo-
nious, including only 5 to 8 of the 15 candidate predictors and averaging 6.4
predictors.

The Bayesian analysis showed that the probability of imprisonment (X14) has
a probability of 98% of having a real effect on crime rates, whereas the length of
imprisonment (X15) is not particularly significant (only 35%). There is strong
evidence that higher crime rates are associated with both educational level (X3)
and income inequality (X13) with 100% probability, as well as with young males
(X1) with 94% and nonwhites (X9) with 83%. But there is no association with
crime for aggregate wealth (X12), labor force participation rate (X6), and sex
ratio (X7). There was also evidence for a negative association between police
expenditure (X4, X5) and crime rate, although the causal story for this was not
evident.

In these findings, the importance of probability of imprisonment (X14),
income inequality (X13), and educational level (X3) are supportive of hypothe-
sis H2 that emphasizes rational deliberation. On the other hand, sizable effects
for young males (X1) and nonwhites (X9) are supportive of H1 that empha-
sizes social and family influences. These two hypotheses are just different, not
mutually exclusive, so there could well be some valid aspects in both.

Regarding statistical paradigm, Raftery detailed numerous advantages of
the Bayesian approach over the frequentist approach. Most important,
the Bayesian analysis is superior conceptually and operationally because
it alone can integrate model selection and parameter estimation. For this
particular study of crime rates, a plausible argument can be made that
the Bayesian analysis, which favors parsimonious models, provided clearer
conclusions.

Explanation of accuracy gain

How do parsimonious models gain accuracy? First of all, it must be insisted
that routinely they do. Cross-validation and related methods prove that for
countless applications across science and technology. For example, to cite just
one number from just the first of this chapter’s examples, at an S/N ratio of 5,
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192 Parsimony and efficiency

the parsimonious quadratic model achieves an average statistical efficiency of
2.22, and this accuracy gain is absolutely indisputable because the true signal
and added noise are known exactly by construction.

Consequently, even if not one person on earth could explain how parsimo-
nious models can be more accurate than their data, this accuracy gain would
still stand as an established fact and a great opportunity. However, a fact without
an explanation is unsatisfying and sometimes even unconvincing.

There are three interrelated explanations for accuracy gain by parsimonious
models. They concern signal–noise selectivity, direct–indirect information, and
variance–bias trade-off.

Signal–Noise Selectivity. This chapter’s preview explained accuracy gain by
parsimonious models in terms of signal–noise selectivity. Early model parame-
ters capture mostly the relatively simple signal, whereas late model parameters
capture mostly the relatively complex noise, as depicted in Figure 10.1. By
selecting the most predictively accurate member of a model family at the peak
of Ockham’s hill, a signal-rich model is separated from a discarded noise-rich
residual.

Direct–Indirect Information. Full and parsimonious models make use of
the data in strikingly different ways. Recall the Ockham’s hill for the soybean
data in Figure 10.5. The data for these 7 soybean varieties tested in 10 environ-
ments with 4 replications are given in Gauch (1992:56), for a total of 280 yield
measurements. For instance, the four replicates for Evans soybeans grown in
Aurora, NY, in 1977 were 2,729, 2,747, 2,593, and 2,832 for an average of 2,725
kg/ha.

Suppose that upon checking these numbers against the original field notes,
a typographical error is detected: the first replicate should be 2,279 rather
than 2,729. What happens to the AMMI-F and AMMI-2 yield estimates upon
correcting that error?

The AMMI-F yield estimates equal the actual data, namely, the averages over
replicates. Hence, that one value for Evans in Aurora in 1977 changes from
2,725 to 2,613 kg/ha. Nothing else changes.

By contrast, the computation of the AMMI-2 yield estimates involves the
entire data matrix. Hence, all yield estimates change, for all 7 varieties in all 10
environments, although most adjustments are rather small.

From the perspective of any given yield, such as that for Evans in Aurora in
1977, there are 4 measurements providing direct information about that yield
and 276 measurements providing indirect information about other varieties
or other environments or both. The full and parsimonious models are fun-
damentally different in what they take to be the relevant data. For each and
every yield estimate, the full model AMMI-F uses its 4 replicates, whereas the
parsimonious model AMMI-2 uses all 280 measurements. That is, AMMI-F
uses only the direct information, whereas AMMI-2 uses both the direct and
indirect information.
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Philosophical reflection 193

How much does the indirect information help the AMMI-2 yield estimates?
There are 4 replicates and the statistical efficiency is 1.44. Hence, AMMI-2 using
4 replicates is as accurate as would be AMMI-F using 4 × 1.44 = 5.76 replicates,
so the indirect information has helped as much as would adding 5.76 – 4 =
1.76 more replications. So, the indirect 276 observations equate to 1.76 direct
observations, or 276 / 1.76 ≈ 157 indirect observations are as informative as 1
direct observation. The indirect information is dilute, but it is also abundant,
and therefore worth incorporating in yield estimates.

Again, how do parsimonious models gain accuracy? The most basic explana-
tion is that they use more data – no magic, no mystery, just more data. This has
been understood by statisticians ever since the seminal paper by Stein (1955).
This explanation also applies to this chapter’s first example, the cubic equation,
because the full model uses only the 2 replicates for each of the 7 levels to
estimate its values (y), whereas a parsimonious model uses all 14 observations
to estimate each and every value.

Variance–Bias Trade-Off. The third and final interrelated explanation of
accuracy gain by parsimonious models concerns a trade-off between variance
and bias. Low variance and low bias are both desired. But increasingly complex
models in a model family have more variance but less bias, so a trade-off is
inevitable. Ockham’s hill occurs because a modest amount of both problems is
better than a huge amount of either problem. However, this is the most technical
of these three explanations, so further details can be relegated to the statistical
literature, such as Gauch (1992:134–153).

In review, parsimonious models gain accuracy by retaining early model
parameters that selectively capture the relatively simple signal and discard-
ing late-model parameters that selectively capture the relatively complex noise.
Most fundamentally, they use available data more aggressively, extracting both
direct and indirect information, and they strike an optimal trade-off between
problems with variance and bias.

Philosophical reflection

This chapter’s analysis of parsimony has been primarily from a scientific and
technological perspective, with special interest in gaining accuracy and effi-
ciency. But greater understanding of parsimony can emerge from adding some
philosophical reflection. This section addresses two topics: parsimony and
nature, and prediction and truth.

Parsimony and Nature. Recall from the historical review that parsimony has
two aspects: an epistemological principle, preferring the simplest theory that
fits the data, and an ontological principle, expecting nature to be simple. The
epistemological aspect of parsimony has been emphasized here because it is
part of scientific method. But the ontological aspect also merits attention.
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194 Parsimony and efficiency

So, is nature simple? For starters, understand that the reality check is itself a
simple theory about a simple world. It declares that “Moving cars are hazardous
to pedestrians.” This is simple precisely because it applies a single dictum to
all persons in all places at all times. The quintessential simplicity of this theory
and its world, otherwise easily unnoticed, can be placed in bold relief by giving
variants that are not so simple. For example, if nature were more complex than
it actually is, more complicated variants could emerge, such as “Moving cars are
hazardous to pedestrians, except for women in France on Saturday mornings
and wealthy men in India and Colorado when it is raining.” Although there is
just one simple and sensible formulation of the reality check, obviously there are
innumerable complex and ridiculous variants. Regarding cars and pedestrians,
a simple world begets a simple theory. Or, to put it the other way around, a
simple theory befits a simple world.

Capitalizing on this little example, meager thought and imagination suffice
to see parsimony everywhere in the world – in iron atoms that are all iron, in
stars that are all stars, in dogs that are all dogs, and so on. Parsimony touches
our every thought. But to really understand parsimony, one must move beyond
examples to principles.

Induction, uniformity, causality, intelligibility, and other scientific princi-
ples all implicate parsimony. Applications of induction to the physical world
presuppose parsimony, specifically in the ontological sense expressed strongly
by the law of the limited variety of nature. Likewise, the law of causality, that
similar causes produce similar effects, is an aspect of simplicity. That nature is
intelligible to our feeble human reason shows that some significant features of
reality are moderately simple. If nature were not simple, science would lose all
of its foundational principles at once.

Yet, the greatest influence of parsimony in scientific method is in the sim-
plicity of the questions asked. Any hypothesis set that expresses a scientific
question could in principle always be expanded to include more possibili-
ties, and that action would make sense were the world more complex than it
is. Were inductive logic bankrupt, were nature not uniform, were causes not
followed by predictable effects, and were nature barely comprehensible, then
enormously more hypotheses would merit consideration. Then, science would
languish with hopelessly complicated questions that would impose impossible
burdens for sufficient evidence. The beginning of science’s simplicity is its simple
questions.

Having argued that nature is simple, this verdict should not be interpreted
simplistically! Indeed, “there is complexity to the whole idea of simplicity”
(Nash 1963:182). Simon (1962) offered remarkably keen insights regarding just
which aspects of nature scientists expect to be simple and just which aspects
they expect to be complex. In essence, the rich complexity of life and ecosystems
emerges from the frugal simplicity of basic physical and chemical laws. From
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Philosophical reflection 195

general experience, scientists and engineers ordinarily have a fairly reliable
general sense of how simple or complex a given system or problem is.

The verdict on parsimony is that “Ockham’s Razor must indubitably be
counted among the tried and useful principles of thinking about the facts
of this beautiful and terrible world and their underlying causative links”
(Hoffmann et al. 1996). Nevertheless, those authors also note the sensible
reaction that “the very idea that Ockham’s Razor is part of the scientific method
seems strange . . . because . . . science is not about simplicity, but about com-
plexity.” The plausible resolution that those authors offer is that simple minds
comprehend complex nature by means of ornate models made of simple pieces.
The balance between a model’s simplicity and the extent to which it approaches
completeness requires a delicate and skillful wielding of Ockham’s razor. The
comments on Hoffmann et al. (1996) by A. Sevin concur: “Our discovery of
complexity increases every day. . . . This good old Ockham’s razor remains an
indispensable tool for exploring complexity.”

Prediction and Truth. Predictive success is often taken as evidence of truth.
To cite one famous example, using Newton’s theory of gravity, Edmond Halley
(1656–1742) calculated the orbit of the impressive comet of 1682, which now
bears his name, identifying it as the one that had appeared previously in 1531
and 1607, and predicting the time and place of its return in 1759. He did not
live to see that return, but it did happen just as he had predicted. His striking
predictive success was accepted universally as proof that his theory of comets’
orbits was true, or at least very nearly true.

Generalizing from that familiar and yet representative example, predictive
success is taken generally as evidence of truth, especially when numerous and
diverse predictions are all correct, so that mere luck is an implausible explana-
tion. Indeed, among theories that have attained strong and lasting acceptance
among scientists, doubtless one of the most significant and consistent categories
of supporting evidence is predictive success.

Nevertheless, this venerable formula, that predictive success implies truth,
can be unsettled by interpreting or applying it too simplistically. Indeed, a little
reflection on Figure 10.4 should be disturbing, or at least thought-provoking.
By construction, a cubic equation is known to be the true model. It is sam-
pled at seven points, with addition of random noise (at an S/N ratio of 5) to
mimic measurement errors, and least-squares fits are calculated for the poly-
nomial family. Although a cubic equation is the true model, the cubic model is
less predictively accurate than another member of the polynomial family, the
quadratic model. So even with the true model entered in the competition, the
criterion of predictive accuracy gives the win to a false model! If such problems
occur for easy cases with constructed and known models, what happens in the
tough world of real scientific research? Does predictive accuracy have no reliable
bearing on truth?
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